40edo: Difference between revisions
Wikispaces>FREEZE No edit summary |
Create intervals table. |
||
Line 1: | Line 1: | ||
'''40edo''' is the [[Equal_division_of_the_octave|equal division of the octave]] into 40 parts of exactly 30 [[cent|cent]]s each. | '''40edo''' is the [[Equal_division_of_the_octave|equal division of the octave]] into 40 parts of exactly 30 [[cent|cent]]s each. Up to this point, all the multiples of 5 have had the 720 cent blackwood 5th as their best approximation of 3/2. 35edo combined the small circles of blackwood and whitewood 5ths, almost equally far from just, requiring you to use both to reach all keys. 40edo adds a diatonic 5th that's closer to just. However, it is still the second flattest diatonic 5th, only exceeded by 47edo in error, which results in it being inconsistent in the 5-limit - combining the best major and minor third will result in the blackwood 5th instead. As such, calling it a perfect 5th seems very much a misnomer. Despite all keys being reachable by stacking this 5th, it does not qualify as meantone either, as stacking 4 of them results in a near perfect tridecimal neutral third rather than a major one. The resulting 5L2S scale has large steps of 6 intervals and small ones of 5, putting sharps and flats right next to letters and requiring a lot of them to notate more distant keys. It [[tempering_out|tempers out]] 648/625 in the [[5-limit|5-limit]]; 225/224 and in the [[7-limit|7-limit]]; 99/98, 121/120 and 176/175 in the [[11-limit|11-limit]]; and 66/65 in the [[13-limit|13-limit]]. | ||
40edo is more accurate on the 2.9.5.21.33.13.51.19 [[k*N_subgroups| 2*40 subgroup]], where it offers the same tuning as [[80edo|80edo]], and tempers out the same commas. It is also the first equal temperament to approximate both the 23rd and 19th harmonic, by tempering out the 9 cent comma to 4-edo, with 10 divisions therein. | 40edo is more accurate on the 2.9.5.21.33.13.51.19 [[k*N_subgroups| 2*40 subgroup]], where it offers the same tuning as [[80edo|80edo]], and tempers out the same commas. It is also the first equal temperament to approximate both the 23rd and 19th harmonic, by tempering out the 9 cent comma to 4-edo, with 10 divisions therein. | ||
{| class="wikitable center-all" | |||
|- | |||
| rowspan="2" |Step # | |||
| style="text-align:center;" |ET | |||
| colspan="2" |Just | |||
|Difference | |||
(ET minus Just) | |||
| colspan="3" |[[Ups and Downs Notation]] | |||
|- | |||
|Cents | |||
|Interval | |||
|Cents | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
|0 | |||
|0¢ | |||
|1:1 | |||
|0 | |||
|0 | |||
|Unison | |||
|1 | |||
|D | |||
|- | |||
|1 | |||
|30 | |||
|59:58 | |||
|29.5944 | |||
|0.40553 | |||
|Up Unison | |||
| | |||
|D# | |||
|- | |||
|2 | |||
|60 | |||
|29:28 | |||
|60.7512 | |||
| -0.75128 | |||
|Downminor 2nd | |||
| | |||
|D## | |||
|- | |||
|3 | |||
|90 | |||
|20:19 | |||
|88.8006 | |||
|1.19930 | |||
|Minor 2nd | |||
| | |||
|D###/Ebbb | |||
|- | |||
|4 | |||
|120 | |||
|15:14 | |||
|119.4428 | |||
|0.55719 | |||
|Upminor 2nd | |||
| | |||
|Ebb | |||
|- | |||
|5 | |||
|150 | |||
|12:11 | |||
|150.6370 | |||
| -0.63705 | |||
|Downmajor 2nd | |||
| | |||
|Eb | |||
|- | |||
|6 | |||
|180 | |||
|10:9 | |||
|182.4037 | |||
| -2.40371 | |||
|Major 2nd | |||
| | |||
|E | |||
|- | |||
|7 | |||
|210 | |||
|9:8 | |||
|203.9100 | |||
|6.08999 | |||
|Upmajor 2nd | |||
| | |||
|E# | |||
|- | |||
|8 | |||
|240 | |||
|8:7 | |||
|231.1741 | |||
|8.82590 | |||
|Augmented 2nd | |||
| | |||
|E## | |||
|- | |||
|9 | |||
|270 | |||
|7:6 | |||
|266.8709 | |||
|3.12909 | |||
|Diminished 3rd | |||
| | |||
|Fbb | |||
|- | |||
|10 | |||
|300 | |||
|19:16 | |||
|297.5130 | |||
|2.48698 | |||
|Downminor 3rd | |||
| | |||
|Fb | |||
|- | |||
|11 | |||
|330 | |||
|6:5 | |||
|315.6412 | |||
|14.3587 | |||
|Upminor 3rd | |||
| | |||
|F | |||
|- | |||
|12 | |||
|360 | |||
|16:13 | |||
|359.4723 | |||
|0.52766 | |||
|Neutral 3rd | |||
| | |||
|F# | |||
|- | |||
|13 | |||
|390 | |||
|5:4 | |||
|386.3137 | |||
|3.68628 | |||
|Major 3rd | |||
| | |||
|F## | |||
|- | |||
|14 | |||
|420 | |||
|14:11 | |||
|417.5079 | |||
|2.49203 | |||
|Augmented 3rd | |||
| | |||
|F###/Gbbb | |||
|- | |||
|15 | |||
|450 | |||
|22:17 | |||
|446.3625 | |||
|3.63746 | |||
|Diminished 4th | |||
| | |||
|Gbb | |||
|- | |||
|16 | |||
|480 | |||
|21:16 | |||
|470.781 | |||
|9.219 | |||
|Blackwood 4th | |||
| | |||
|Gb | |||
|- | |||
|17 | |||
|510 | |||
|4:3 | |||
|498.0449 | |||
|11.9550 | |||
|Diatonic 4th | |||
| | |||
|G | |||
|- | |||
|18 | |||
|540 | |||
|11:8 | |||
|551.3179 | |||
| -11.3179 | |||
|Augmented 4th | |||
| | |||
|G# | |||
|- | |||
|19 | |||
|570 | |||
|25:18 | |||
|568.7174 | |||
|1.2825 | |||
|Minor Tritone | |||
| | |||
|G## | |||
|- | |||
|20 | |||
|600 | |||
|7:5 | |||
|582.5121 | |||
|17.4878 | |||
|Perfect Tritone | |||
| | |||
|G###/Abbb | |||
|- | |||
|21 | |||
|630 | |||
|23:16 | |||
|628.2743 | |||
|1.72565 | |||
|Major Tritone | |||
| | |||
|Abb | |||
|- | |||
|22 | |||
|660 | |||
|16:11 | |||
|648.6820 | |||
|11.3179 | |||
|Diminished 5th | |||
| | |||
|Ab | |||
|- | |||
|23 | |||
|690 | |||
|3:2 | |||
|701.9550 | |||
| -11.9550 | |||
|Diatonic 5th | |||
| | |||
|A | |||
|- | |||
|24 | |||
|720 | |||
|32:21 | |||
|729.2191 | |||
| -9.219 | |||
|Blackwood 5th | |||
| | |||
|A# | |||
|- | |||
|25 | |||
|750 | |||
|17:11 | |||
|753.6374 | |||
| -3.63746 | |||
|Augmented 5th | |||
| | |||
|A## | |||
|- | |||
|26 | |||
|780 | |||
|11:7 | |||
|782.4920 | |||
| -2.49203 | |||
|Diminished 6th | |||
| | |||
|A###/Bbbb | |||
|- | |||
|27 | |||
|810 | |||
| style="text-align:center;" |8:5 | |||
|813.6862 | |||
| -3.68628 | |||
|Minor 6th | |||
| | |||
|Bbb | |||
|- | |||
|28 | |||
|840 | |||
|13:8 | |||
|840.5276 | |||
| -0.52766 | |||
|Neutral 6th | |||
| | |||
|Bb | |||
|- | |||
|29 | |||
|870 | |||
| style="text-align:center;" |5:3 | |||
|884.3587 | |||
| -14.3587 | |||
|Downmajor 6th | |||
| | |||
|B | |||
|- | |||
|30 | |||
|900 | |||
| style="text-align:center;" |32:19 | |||
|902.4869 | |||
| -2.48698 | |||
|Upmajor 6th | |||
| | |||
|B# | |||
|- | |||
|31 | |||
|930 | |||
| style="text-align:center;" |12:7 | |||
|933.1291 | |||
| -3.12909 | |||
|Augmented 6th | |||
| | |||
|B## | |||
|- | |||
|32 | |||
|960 | |||
| style="text-align:center;" |7:4 | |||
|968.8259 | |||
| -8.82590 | |||
|Harmonic 7th | |||
| | |||
|Cbb | |||
|- | |||
|33 | |||
|990 | |||
| style="text-align:center;" |16:9 | |||
|996.0899 | |||
| -6.08999 | |||
|Downminor 7th | |||
| | |||
|Cb | |||
|- | |||
|34 | |||
|1020 | |||
| style="text-align:center;" |9:5 | |||
|1017.5962 | |||
|2.40371 | |||
|Minor 7th | |||
| | |||
|C | |||
|- | |||
|35 | |||
|1050 | |||
| style="text-align:center;" |11:6 | |||
|1049.3629 | |||
|0.63705 | |||
|Upminor 7th | |||
| | |||
|C# | |||
|- | |||
|36 | |||
|1080 | |||
| style="text-align:center;" |28:15 | |||
|1080.5571 | |||
| -0.55719 | |||
|Downmajor 7th | |||
| | |||
|C## | |||
|- | |||
|37 | |||
|1110 | |||
| style="text-align:center;" |19:10 | |||
|1111.1993 | |||
| -1.19930 | |||
|Major 7th | |||
| | |||
|C###/Dbbb | |||
|- | |||
|38 | |||
|1140 | |||
| style="text-align:center;" |56:29 | |||
|1139.2487 | |||
|0.75128 | |||
|Upmajor 7th | |||
| | |||
|Dbb | |||
|- | |||
|39 | |||
|1170 | |||
| style="text-align:center;" |116:59 | |||
|1170.4055 | |||
| -0.40553 | |||
|Down Octave | |||
| | |||
|Db | |||
|- | |||
|40 | |||
|1200 | |||
| style="text-align:center;" |2:1 | |||
|1200 | |||
|0 | |||
|Octave | |||
| | |||
|D | |||
|- | |||
| | |||
| | |||
| style="text-align:center;" | | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| style="text-align:center;" | | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| style="text-align:center;" | | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| style="text-align:center;" | | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| style="text-align:center;" | | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|} | |||
[[Category:edo]] | [[Category:edo]] | ||
[[Category:subgroup]] | [[Category:subgroup]] | ||
[[Category:theory]] | [[Category:theory]] |