Rank-3 scale theorems: Difference between revisions
Line 124: | Line 124: | ||
# a4 - a3 = g1 - g2 != 0, since the scale is a non-trivial AG. | # a4 - a3 = g1 - g2 != 0, since the scale is a non-trivial AG. | ||
# a4 - a1 = g3 - g2 = (g3 + g1) - (g2 + g1) != 0. This is exactly the chroma of the mos generated by g0. | # a4 - a1 = g3 - g2 = (g3 + g1) - (g2 + g1) != 0. This is exactly the chroma of the mos generated by g0. | ||
# a4 - a2 = g1 - 2 g2 + g3 = (g3 - g2) + (g1 - g2) = | # a4 - a2 = g1 - 2 g2 + g3 = (g3 - g2) + (g1 - g2) = (chroma ± ε) != 0 by choice of tuning. | ||
In case 2, let (2,1)-(1,1) = g1, (1,2)-(2,1) = g2 be the two alternating generators. Let g3 be the leftover generator after stacking alternating g1 and g2. Then the generator circle looks like g1 g2 g1 g2 ... g1 g2 g3. Then the generators corresponding to a step are: | In case 2, let (2,1)-(1,1) = g1, (1,2)-(2,1) = g2 be the two alternating generators. Let g3 be the leftover generator after stacking alternating g1 and g2. Then the generator circle looks like g1 g2 g1 g2 ... g1 g2 g3. Then the generators corresponding to a step are: |