27edo: Difference between revisions
Wikispaces>Kosmorsky **Imported revision 578810549 - Original comment: ** |
Wikispaces>MasonGreen1 **Imported revision 583137091 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:MasonGreen1|MasonGreen1]] and made on <tt>2016-05-15 02:06:38 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>583137091</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 16: | Line 16: | ||
Though the [[7-limit]] tuning of 27edo is not highly accurate, it nonetheless is the smallest equal division to represent the 7 odd limit both [[consistent]]ly and distinctly--that is, everything in the 7-limit [[Diamonds|diamond]] is uniquely represented by a certain number of steps of 27 equal. It also represents the 13th harmonic very well, and performs quite decently as a 2.3.5.7.13 temperament | Though the [[7-limit]] tuning of 27edo is not highly accurate, it nonetheless is the smallest equal division to represent the 7 odd limit both [[consistent]]ly and distinctly--that is, everything in the 7-limit [[Diamonds|diamond]] is uniquely represented by a certain number of steps of 27 equal. It also represents the 13th harmonic very well, and performs quite decently as a 2.3.5.7.13 temperament | ||
Its step, as well as the octave-inverted and octave-equivalent versions of it, holds the distinction for having around the highest [[harmonic entropy]] possible and thus is, in theory, most dissonant. | Its step, as well as the octave-inverted and octave-equivalent versions of it, holds the distinction for having around the highest [[harmonic entropy]] possible and thus is, in theory, most dissonant, assuming the relatively common values of a=2 and s=1%. This property is shared with all edos between around 24 and 30. Intervals smaller than this tend to be perceived as unison and are more consonant as a result; intervals larger than this have less "tension" and thus are also more consonant. | ||
The 27 note system ore one similar like a well temperament can be notated very easily, by a variation on the quartertone accidentals. In this case a sharp raises a note just a hair beneath the following nominal (for example C to C# describes the approximate 10/9 and 11/10 interval) and the flat conversely lowers: these are augmented unisons and diminished unisons. Just so, one finds that an accidental can be divided in half, and this fill the remaining places without need for double sharps and double flats. Enharmonically then, E double flat means C half sharp. In other words, the resemblance to quarter tone notation differs in enharmonic divergence. D flat, C half-sharp, D half flat, and C sharp are all different. The composer can decide for himself which tertiary accidental is necessary if he will need redundancy to keep the chromatic pitches within a compass on paper relative to the natural names (C, D, E etc.) otherwise is simple enough and the same tendency for A# to be higher than Bb is not only familiar, though here very exaggerated, to those working with pythagorean scale, but also to many classically trained violinists. et voila | The 27 note system ore one similar like a well temperament can be notated very easily, by a variation on the quartertone accidentals. In this case a sharp raises a note just a hair beneath the following nominal (for example C to C# describes the approximate 10/9 and 11/10 interval) and the flat conversely lowers: these are augmented unisons and diminished unisons. Just so, one finds that an accidental can be divided in half, and this fill the remaining places without need for double sharps and double flats. Enharmonically then, E double flat means C half sharp. In other words, the resemblance to quarter tone notation differs in enharmonic divergence. D flat, C half-sharp, D half flat, and C sharp are all different. The composer can decide for himself which tertiary accidental is necessary if he will need redundancy to keep the chromatic pitches within a compass on paper relative to the natural names (C, D, E etc.) otherwise is simple enough and the same tendency for A# to be higher than Bb is not only familiar, though here very exaggerated, to those working with pythagorean scale, but also to many classically trained violinists. et voila | ||
Line 145: | Line 145: | ||
Though the <a class="wiki_link" href="/7-limit">7-limit</a> tuning of 27edo is not highly accurate, it nonetheless is the smallest equal division to represent the 7 odd limit both <a class="wiki_link" href="/consistent">consistent</a>ly and distinctly--that is, everything in the 7-limit <a class="wiki_link" href="/Diamonds">diamond</a> is uniquely represented by a certain number of steps of 27 equal. It also represents the 13th harmonic very well, and performs quite decently as a 2.3.5.7.13 temperament<br /> | Though the <a class="wiki_link" href="/7-limit">7-limit</a> tuning of 27edo is not highly accurate, it nonetheless is the smallest equal division to represent the 7 odd limit both <a class="wiki_link" href="/consistent">consistent</a>ly and distinctly--that is, everything in the 7-limit <a class="wiki_link" href="/Diamonds">diamond</a> is uniquely represented by a certain number of steps of 27 equal. It also represents the 13th harmonic very well, and performs quite decently as a 2.3.5.7.13 temperament<br /> | ||
<br /> | <br /> | ||
Its step, as well as the octave-inverted and octave-equivalent versions of it, holds the distinction for having around the highest <a class="wiki_link" href="/harmonic%20entropy">harmonic entropy</a> possible and thus is, in theory, most dissonant. | Its step, as well as the octave-inverted and octave-equivalent versions of it, holds the distinction for having around the highest <a class="wiki_link" href="/harmonic%20entropy">harmonic entropy</a> possible and thus is, in theory, most dissonant, assuming the relatively common values of a=2 and s=1%. This property is shared with all edos between around 24 and 30. Intervals smaller than this tend to be perceived as unison and are more consonant as a result; intervals larger than this have less &quot;tension&quot; and thus are also more consonant.<br /> | ||
<br /> | <br /> | ||
The 27 note system ore one similar like a well temperament can be notated very easily, by a variation on the quartertone accidentals. In this case a sharp raises a note just a hair beneath the following nominal (for example C to C# describes the approximate 10/9 and 11/10 interval) and the flat conversely lowers: these are augmented unisons and diminished unisons. Just so, one finds that an accidental can be divided in half, and this fill the remaining places without need for double sharps and double flats. Enharmonically then, E double flat means C half sharp. In other words, the resemblance to quarter tone notation differs in enharmonic divergence. D flat, C half-sharp, D half flat, and C sharp are all different. The composer can decide for himself which tertiary accidental is necessary if he will need redundancy to keep the chromatic pitches within a compass on paper relative to the natural names (C, D, E etc.) otherwise is simple enough and the same tendency for A# to be higher than Bb is not only familiar, though here very exaggerated, to those working with pythagorean scale, but also to many classically trained violinists. et voila<br /> | The 27 note system ore one similar like a well temperament can be notated very easily, by a variation on the quartertone accidentals. In this case a sharp raises a note just a hair beneath the following nominal (for example C to C# describes the approximate 10/9 and 11/10 interval) and the flat conversely lowers: these are augmented unisons and diminished unisons. Just so, one finds that an accidental can be divided in half, and this fill the remaining places without need for double sharps and double flats. Enharmonically then, E double flat means C half sharp. In other words, the resemblance to quarter tone notation differs in enharmonic divergence. D flat, C half-sharp, D half flat, and C sharp are all different. The composer can decide for himself which tertiary accidental is necessary if he will need redundancy to keep the chromatic pitches within a compass on paper relative to the natural names (C, D, E etc.) otherwise is simple enough and the same tendency for A# to be higher than Bb is not only familiar, though here very exaggerated, to those working with pythagorean scale, but also to many classically trained violinists. et voila<br /> |