Rank-3 scale theorems: Difference between revisions
Line 26: | Line 26: | ||
===== MV2 is equivalent to LQ in 2-step scales (WIP) ===== | ===== MV2 is equivalent to LQ in 2-step scales (WIP) ===== | ||
Every mos is slope-LQ. This follows from the fact that every k-step is of the form pL qs or (p+1)L (q-1)s, where p/q <= a/b <= (p+1)/(q-1). This in turn follows from the fact that a mos has a generator, since every k-step is an octave reduction of either k perfect generators or k-1 perfect generators + 1 imperfect generator, and the perfect generator and the imperfect generator differ by changing one L to an s. If both the perfect generator and the imperfect generator had #L/#s > b/a (it must definitely be smaller than ceil(b/a) + 1, since the perfect generator is a collection of L...Ls chunks, and the size of such a chunk is <= ceil(b/a)), this would imply that n-1 perfect generators + 1 imperfect generator would not close at a period multiple. | Every mos is slope-LQ. This follows from the fact that every k-step is of the form pL qs or (p+1)L (q-1)s, where p/q <= a/b <= (p+1)/(q-1). This in turn follows from the fact that a mos has a generator, since every k-step is an octave reduction of either k perfect generators or k-1 perfect generators + 1 imperfect generator, and the perfect generator and the imperfect generator differ by changing one L to an s. If both the perfect generator and the imperfect generator had #L/#s > b/a (it must definitely be smaller than ceil(b/a) + 1, since the perfect generator is a collection of L...Ls chunks, and the size of such a chunk is <= ceil(b/a)), this would imply that n-1 perfect generators + 1 imperfect generator would not close at a period multiple. It is obvious that slope-LQ implies MV2. | ||
Slope-LQ => pointwise-LQ: | |||
Pointwise-LQ => slope LQ: | |||
==== MV3 Theorem 1 (WIP) ==== | ==== MV3 Theorem 1 (WIP) ==== |