|
|
Line 1: |
Line 1: |
| =<span style="color: #006138; font-family: 'Times New Roman',Times,serif; font-size: 113%;">359 tone equal temperament</span>= | | =359 tone equal temperament= |
|
| |
|
| 359-tET or 359-EDO divides the octave in 359 parts of 3.34262 cents each. 359-EDO contains a very close approximation of the pure 3/2 fifth of 701.955 cents; <span style="font-size: 13px; line-height: 1.5;">with the </span>'''<span style="font-size: 13px; line-height: 1.5;">210\359</span>'''<span style="font-size: 13px; line-height: 1.5;"> step of </span>'''<span style="font-size: 13px; line-height: 1.5;">701.94986 cents</span>'''<span style="font-size: 13px; line-height: 1.5;">. 359-EDO supports a type of exaggered Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America; the Pythagorean fifth (701.955 Cents) minus the Pythagorean comma (23.46 Cents) = </span>'''<span style="font-size: 13px; line-height: 1.5;">678.495 cents,</span>'''<span style="font-size: 13px; line-height: 1.5;"> in 359-EDO this is the step </span>'''<span style="font-size: 13px; line-height: 1.5;">203\359</span>'''<span style="font-size: 13px; line-height: 1.5;"> of </span>'''<span style="font-size: 13px; line-height: 1.5;">678.55153 cents.</span>''' | | 359-tET or 359-EDO divides the octave into 359 parts of 3.34262 cents each. 359-EDO contains a very close approximation of the pure 3/2 fifth of 701.955 cents, with the 210\359 step of 701.94986 cents. 359-EDO supports a type of exaggerated Hornbostel mode, with an approximation of the blown fifth that he described of the pan flutes of some regions of South America; the Pythagorean fifth (701.955c) minus the Pythagorean comma (23.46c) = 678.495c; in 359-EDO this is the step 203\359 of 678.55153c. |
|
| |
|
| '''Pythagorean diatonic scale: 61 61 27 61 61 61 27'''
| | Pythagorean diatonic scale: 61 61 27 61 61 61 27 |
|
| |
|
| '''Exaggered Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the Square root of Pi [+1\359 step of each one]).''' [[Category:edo]]
| | Exaggerated Hornbostel superdiatonic scale: 47 47 47 15 47 47 47 47 15 (fails in the position of Phi and the square root of Pi [+1\359 step of each one]). |
| | |
| | [[Category:edo]] |
| [[Category:nano]] | | [[Category:nano]] |
| [[Category:theory]] | | [[Category:theory]] |