5L 5s: Difference between revisions
mNo edit summary |
|||
Line 14: | Line 14: | ||
The true MOS, LsLsLsLsLs, is always proper because there is only one small step per period, but because there are 5 periods in an octave, there are a wealth of near-MOSes in which multiples of the period (that is, intervals of an even number of steps) are the only generic intervals that come in more than two different flavors. Specifically, there are 6 others: LLssLsLsLs, LLssLLssLs, LLsLssLsLs, LLsLssLLss, LLsLsLssLs, LLsLsLsLss. [[15edo]] is right on the boundary of being [[Rothenberg_propriety|proper]]. | The true MOS, LsLsLsLsLs, is always proper because there is only one small step per period, but because there are 5 periods in an octave, there are a wealth of near-MOSes in which multiples of the period (that is, intervals of an even number of steps) are the only generic intervals that come in more than two different flavors. Specifically, there are 6 others: LLssLsLsLs, LLssLLssLs, LLsLssLsLs, LLsLssLLss, LLsLsLssLs, LLsLsLsLss. [[15edo]] is right on the boundary of being [[Rothenberg_propriety|proper]]. | ||
Some important properties of Blackwood are: | |||
* Blackwood[10] has the most 5-odd-limit consonant triads it is possible to have in a 10-note 5-limit scale. | |||
* Because it is a 10-note scale with a period of 1/5 of an octave, any arbitrary harmony will occur either 5 or 10 times within the 10-note scale, and for otonal harmonies consisting of three or more notes, the utonal counterpart of the harmony will also occur either 5 or 10 times within the scale; this is a property that is only held by other scales with 5 periods per octave. | |||
* Blackwood[10] is also a "mode of limited transposition" like the Diminished and Augmented scales in 12edo: since the scale is built by applying the generator only a single time within each period, the scale has only two modes. | |||
== Intervals == | == Intervals == | ||