|
|
Line 1,297: |
Line 1,297: |
|
| |
|
| ==== 34nejis ==== | | ==== 34nejis ==== |
|
| |
| == Rank-2 temperaments ==
| |
| Oneirotonic temperaments have a sort of analogy to diatonic temperaments superpyth and meantone in how they treat the large step. In diatonic the large step approximates 9/8 (a very good 9/8 in 12edo), but superpyth has 9/8 ~ 8/7, and meantone has 9/8 ~ 10/9. In oneirotonic the large step tends to approximate 10/9 (and is a very good 10/9 in 13edo which is the oneirotonic analogue to 12edo), but different oneiro temperaments do different things with it. In A-Team (13&18), 10/9 is equated with 9/8, making the major oneirothird a 5/4 (thus is "meantone" in that sense). In both Petrtri (13&21) and Tridec (21&29), 10/9 is equated with 11/10, making the major oneirothird a 11/9; and the perfect oneirofourth is equated to 13/10. So the compressed major triad add2 (R-M2-M3-M5, M5 = major oneirofifth = minor fifth in 13edo) is interpreted as 9:10:11:13 in petrtri, analogous to meantone's 8:9:10:12. Thus Petrtri and Tridec are the same temperament when you only care about the 9:10:11:13, or equivalently the 2.9/5.11/5.13/5 subgroup. This is one reason why Tridec can be viewed as the oneirotonic analogue of [[flattone]]: it's a flatter variant of the flat-of-13edo oneiro temperament on the 2.9/5.11/5.13/5 subgroup.
| |
|
| |
| Vulture/[[Hemifamity_temperaments|Buzzard]], in which four generators make a 3/1 (and three generators approximate an octave plus 8/7), is the only [[harmonic entropy]] minimum in the oneirotonic range. However, the rest of this region is still rich in notable subgroup temperaments.
| |
| === Tridec ===
| |
| Subgroup: 2.3.7/5.11/5.13/5
| |
|
| |
| Period: 1\1
| |
|
| |
| Optimal ([[POTE]]) generator: 455.2178
| |
|
| |
| EDO generators: [[21edo|8\21]], [[29edo|11\29]], [[37edo|14\37]]
| |
|
| |
| <div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
| |
| <div style="line-height:1.6;">Technical data</div>
| |
| <div class="mw-collapsible-content">
| |
|
| |
| [[Comma]] list: 196/195, 847/845, 1001/1000
| |
|
| |
| [[Mapping]] (for 2, 3, 7/5, 11/5, 13/5): [{{val|1 5 2 0 1}}, {{val|0 -9 -4 3 1}}]
| |
|
| |
| Mapping generators: ~2, ~13/10
| |
|
| |
| {{Vals|legend=1| 21, 29, 37 }}
| |
|
| |
| </div></div>
| |
|
| |
| ==== Intervals ====
| |
| Sortable table of intervals in the Dylathian mode and their Tridec interpretations:
| |
|
| |
| {| class="wikitable right-2 right-3 right-4 sortable"
| |
| |-
| |
| ! Degree
| |
| ! Size in 21edo
| |
| ! Size in 29edo
| |
| ! Size in 37edo
| |
| ! Size in POTE tuning
| |
| ! Note name on Q
| |
| ! class="unsortable"| Approximate ratios
| |
| ! #Gens up
| |
| |-
| |
| | 1
| |
| | 0\21, 0.00
| |
| | 0\29, 0.00
| |
| | 0\37, 0.00
| |
| | 0.00
| |
| | Q
| |
| | 1/1
| |
| | 0
| |
| |-
| |
| | 2
| |
| | 3\21, 171.43
| |
| | 4\29, 165.52
| |
| | 5\37, 163.16
| |
| | 165.65
| |
| | J
| |
| | 11/10, 10/9
| |
| | +3
| |
| |-
| |
| | 3
| |
| | 6\21, 342.86
| |
| | 8\29, 331.03
| |
| | 10\37, 324.32
| |
| | 331.31
| |
| | K
| |
| | 11/9, 6/5
| |
| | +6
| |
| |-
| |
| | 4
| |
| | 8\21, 457.14
| |
| | 11\29, 455.17
| |
| | 14\37, 454.05
| |
| | 455.17
| |
| | L
| |
| | 13/10, 9/7
| |
| | +1
| |
| |-
| |
| | 5
| |
| | 11\21, 628.57
| |
| | 15\29, 620.69
| |
| | 19\37, 616.22
| |
| | 620.87
| |
| | M
| |
| | 13/9, 10/7
| |
| | +4
| |
| |-
| |
| | 6
| |
| | 14\21, 800.00
| |
| | 19\29, 786.21
| |
| | 23\37, 778.38
| |
| | 786.52
| |
| | N
| |
| | 11/7
| |
| | +7
| |
| |-
| |
| | 7
| |
| | 16\21, 914.29
| |
| | 22\29, 910.34
| |
| | 28\37, 908.11
| |
| | 910.44
| |
| | O
| |
| | 22/13
| |
| | +2
| |
| |-
| |
| | 8
| |
| | 19\21, 1085.71
| |
| | 26\29, 1075.86
| |
| | 33\37, 1070.27
| |
| | 1076.09
| |
| | P
| |
| | 13/7, 28/15
| |
| | +5
| |
| |}
| |
|
| |
| === Petrtri ===
| |
| Subgroup: 2.5.9.11.13.17
| |
|
| |
| Period: 1\1
| |
|
| |
| Optimal ([[POTE]]) generator: 459.1502
| |
|
| |
| EDO generators: [[13edo|5\13]], [[21edo|8\21]], [[34edo|13\34]]
| |
|
| |
| <div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
| |
| <div style="line-height:1.6;">Technical data</div>
| |
| <div class="mw-collapsible-content">
| |
|
| |
| [[Comma]] list: 100/99, 144/143, 170/169, 221/220
| |
|
| |
| [[Mapping]] (for 2, 5, 9, 11, 13, 17): [{{val|1 5 7 5 6 6}}, {{val|0 -7 -10 -4 -6 -5}}]
| |
|
| |
| Mapping generators: ~2, ~13/10
| |
|
| |
| {{Vals|legend=1| 13, 21, 34 }}
| |
|
| |
| </div></div>
| |
| ==== Intervals ====
| |
| Sortable table of intervals in the Dylathian mode and their Petrtri interpretations:
| |
| {| class="wikitable right-2 right-3 right-4 right-5 sortable"
| |
| |-
| |
| ! Degree
| |
| ! Size in 13edo
| |
| ! Size in 21edo
| |
| ! Size in 34edo
| |
| ! Size in POTE tuning
| |
| ! Note name on Q
| |
| ! class="unsortable"| Approximate ratios
| |
| ! #Gens up
| |
| |-
| |
| | 1
| |
| | 0\13, 0.00
| |
| | 0\21, 0.00
| |
| | 0\34, 0.00
| |
| | 0.00
| |
| | Q
| |
| | 1/1
| |
| | 0
| |
| |-
| |
| | 2
| |
| | 2\13, 184.62
| |
| | 3\21, 171.43
| |
| | 5\34, 176.47
| |
| | 177.45
| |
| | J
| |
| | 10/9, 11/10
| |
| | +3
| |
| |-
| |
| | 3
| |
| | 4\13, 369.23
| |
| | 6\21, 342.86
| |
| | 10\34, 352.94
| |
| | 354.90
| |
| | K
| |
| | 11/9, 16/13
| |
| | +6
| |
| |-
| |
| | 4
| |
| | 5\13, 461.54
| |
| | 8\21, 457.14
| |
| | 13\34, 458.82
| |
| | 459.15
| |
| | L
| |
| | 13/10, 17/13, 22/17
| |
| | +1
| |
| |-
| |
| | 5
| |
| | 7\13, 646.15
| |
| | 11\21, 628.57
| |
| | 18\34, 635.294
| |
| | 636.60
| |
| | M
| |
| | 13/9, 16/11, 23/16 (esp. 21edo)
| |
| | +4
| |
| |-
| |
| | 6
| |
| | 9\13, 830.77
| |
| | 14\21, 800.00
| |
| | 23\34, 811.77
| |
| | 814.05
| |
| | N
| |
| | 8/5
| |
| | +7
| |
| |-
| |
| | 7
| |
| | 10\13, 923.08
| |
| | 16\21, 914.29
| |
| | 26\34, 917.65
| |
| | 918.30
| |
| | O
| |
| | 17/10
| |
| | +2
| |
| |-
| |
| | 8
| |
| | 12\13, 1107.69
| |
| | 19\21, 1085.71
| |
| | 31\34, 1094.12
| |
| | 1095.75
| |
| | P
| |
| | 17/9, 32/17, 15/8
| |
| | +5
| |
| |}
| |
|
| |
| === A-Team ===
| |
| Subgroup: 2.5.9.21
| |
|
| |
| Period: 1\1
| |
|
| |
| Optimal ([[POTE]]) generator: 464.3865
| |
|
| |
| EDO generators: [[13edo|5\13]], [[18edo|7\18]], [[31edo|12\31]], [[44edo|17\44]]
| |
|
| |
| <div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
| |
| <div style="line-height:1.6;">Technical data</div>
| |
| <div class="mw-collapsible-content">
| |
|
| |
| [[Comma]] list: 81/80, 1029/1024
| |
|
| |
| [[Mapping]] (for 2, 5, 9, 21): [{{val|1 0 2 4}}, {{val|0 6 3 1}}]
| |
|
| |
| Mapping generators: ~2, ~21/16
| |
|
| |
| {{Vals|legend=1| 13, 18, 31, 44 }}
| |
|
| |
| </div></div>
| |
| ==== Intervals ====
| |
| Sortable table of intervals in the Dylathian mode and their A-Team interpretations:
| |
|
| |
| {| class="wikitable right-2 right-3 right-4 sortable"
| |
| |-
| |
| ! Degree
| |
| ! Size in 13edo
| |
| ! Size in 18edo
| |
| ! Size in 31edo
| |
| ! Note name on Q
| |
| ! class="unsortable"| Approximate ratios<ref>The ratio interpretations that are not valid for 18edo are italicized.</ref>
| |
| ! #Gens up
| |
| |-
| |
| | 1
| |
| | 0\13, 0.00
| |
| | 0\18, 0.00
| |
| | 0\31, 0.00
| |
| | Q
| |
| | 1/1
| |
| | 0
| |
| |-
| |
| | 2
| |
| | 2\13, 184.62
| |
| | 3\18, 200.00
| |
| | 5\31, 193.55
| |
| | J
| |
| | 9/8, 10/9
| |
| | +3
| |
| |-
| |
| | 3
| |
| | 4\13, 369.23
| |
| | 6\18, 400.00
| |
| | 10\31, 387.10
| |
| | K
| |
| | 5/4
| |
| | +6
| |
| |-
| |
| | 4
| |
| | 5\13, 461.54
| |
| | 7\18, 466.67
| |
| | 12\31, 464.52
| |
| | L
| |
| | 21/16, ''13/10''
| |
| | +1
| |
| |-
| |
| | 5
| |
| | 7\13, 646.15
| |
| | 10\18, 666.66
| |
| | 17\31, 658.06
| |
| | M
| |
| | ''13/9'', ''16/11''
| |
| | +4
| |
| |-
| |
| | 6
| |
| | 9\13, 830.77
| |
| | 13\18, 866.66
| |
| | 22\31, 851.61
| |
| | N
| |
| | ''13/8'', ''18/11''
| |
| | +7
| |
| |-
| |
| | 7
| |
| | 10\13, 923.08
| |
| | 14\18, 933.33
| |
| | 24\31, 929.03
| |
| | O
| |
| | 12/7
| |
| | +2
| |
| |-
| |
| | 8
| |
| | 12\13, 1107.69
| |
| | 17\18, 1133.33
| |
| | 29\31, 1122.58
| |
| | P
| |
| |
| |
| | +5
| |
| |}
| |
| <references/>
| |
|
| |
| === Buzzard ===
| |
| Subgroup: 2.3.5.7
| |
|
| |
| Period: 1\1
| |
|
| |
| Optimal ([[POTE]]) generator: ~21/16 = 475.636
| |
|
| |
| EDO generators: [[38edo|15\38]], [[43edo|17\43]], [[48edo|19\48]], [[53edo|21\53]], [[58edo|23\58]], [[63edo|25\63]]
| |
|
| |
| <div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
| |
| <div style="line-height:1.6;">Technical data</div>
| |
| <div class="mw-collapsible-content">
| |
|
| |
| Commas: 1728/1715, 5120/5103
| |
|
| |
| Map: [<1 0 -6 4|, <0 4 21 -3|]
| |
|
| |
| Mapping generators: ~2, ~21/16
| |
|
| |
| Wedgie: <<4 21 -3 24 -16 -66||
| |
|
| |
| {{Vals| 48, 53, 111, 164d, 275d}}
| |
|
| |
| Badness: 0.0480
| |
| </div></div>
| |
|
| |
| ==== Intervals ====
| |
| Sortable table of intervals in the Dylathian mode and their Buzzard interpretations:
| |
|
| |
| {| class="wikitable right-2 right-3 right-4 right-5 sortable"
| |
| |-
| |
| ! Degree
| |
| ! Size in 38edo
| |
| ! Size in 53edo
| |
| ! Size in 63edo
| |
| ! Size in POTE tuning
| |
| ! Note name on Q
| |
| ! class="unsortable"| Approximate ratios
| |
| ! #Gens up
| |
| |-
| |
| | 1
| |
| | 0\38, 0.00
| |
| | 0\53, 0.00
| |
| | 0\63, 0.00
| |
| | 0.00
| |
| | Q
| |
| | 1/1
| |
| | 0
| |
| |-
| |
| | 2
| |
| | 7\38, 221.05
| |
| | 10\53, 226.42
| |
| | 12\63, 228.57
| |
| | 227.07
| |
| | J
| |
| | 8/7
| |
| | +3
| |
| |-
| |
| | 3
| |
| | 14\38, 442.10
| |
| | 20\53, 452.83
| |
| | 24\63, 457.14
| |
| | 453.81
| |
| | K
| |
| | 13/10, 9/7
| |
| | +6
| |
| |-
| |
| | 4
| |
| | 15\38, 473.68
| |
| | 21\53, 475.47
| |
| | 25\63, 476.19
| |
| | 475.63
| |
| | L
| |
| | 21/16
| |
| | +1
| |
| |-
| |
| | 5
| |
| | 22\38, 694.73
| |
| | 31\53, 701.89
| |
| | 37\63, 704.76
| |
| | 702.54
| |
| | M
| |
| | 3/2
| |
| | +4
| |
| |-
| |
| | 6
| |
| | 29\38, 915.78
| |
| | 41\53, 928.30
| |
| | 49\63, 933.33
| |
| | 929.45
| |
| | N
| |
| | 12/7, 22/13
| |
| | +7
| |
| |-
| |
| | 7
| |
| | 30\38, 947.36
| |
| | 42\53, 950.94
| |
| | 50\63, 952.38
| |
| | 951.27
| |
| | O
| |
| | 26/15
| |
| | +2
| |
| |-
| |
| | 8
| |
| | 37\38, 1168.42
| |
| | 52\53, 1177.36
| |
| | 62\63, 1180.95
| |
| | 1178.18
| |
| | P
| |
| | 108/55, 160/81
| |
| | +5
| |
| |}
| |
|
| |
|
| == Samples == | | == Samples == |