5L 3s: Difference between revisions

Inthar (talk | contribs)
mNo edit summary
Inthar (talk | contribs)
m Rank-2 temperaments: don't need this section
Line 1,297: Line 1,297:


==== 34nejis ====
==== 34nejis ====
== Rank-2 temperaments ==
Oneirotonic temperaments have a sort of analogy to diatonic temperaments superpyth and meantone in how they treat the large step. In diatonic the large step approximates 9/8 (a very good 9/8 in 12edo), but superpyth has 9/8 ~ 8/7, and meantone has 9/8 ~ 10/9. In oneirotonic the large step tends to approximate 10/9 (and is a very good 10/9 in 13edo which is the oneirotonic analogue to 12edo), but different oneiro temperaments do different things with it. In A-Team (13&18), 10/9 is equated with 9/8, making the major oneirothird a 5/4 (thus is "meantone" in that sense). In both Petrtri (13&21) and Tridec (21&29), 10/9 is equated with 11/10, making the major oneirothird a 11/9; and the perfect oneirofourth is equated to 13/10. So the compressed major triad add2 (R-M2-M3-M5, M5 = major oneirofifth = minor fifth in 13edo) is interpreted as 9:10:11:13 in petrtri, analogous to meantone's 8:9:10:12. Thus Petrtri and Tridec are the same temperament when you only care about the 9:10:11:13, or equivalently the 2.9/5.11/5.13/5 subgroup. This is one reason why Tridec can be viewed as the oneirotonic analogue of [[flattone]]:  it's a flatter variant of the flat-of-13edo oneiro temperament on the 2.9/5.11/5.13/5 subgroup.
Vulture/[[Hemifamity_temperaments|Buzzard]], in which four generators make a 3/1 (and three generators approximate an octave plus 8/7), is the only [[harmonic entropy]] minimum in the oneirotonic range. However, the rest of this region is still rich in notable subgroup temperaments.
=== Tridec ===
Subgroup: 2.3.7/5.11/5.13/5
Period: 1\1
Optimal ([[POTE]]) generator: 455.2178
EDO generators: [[21edo|8\21]], [[29edo|11\29]], [[37edo|14\37]]
<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">
[[Comma]] list: 196/195, 847/845, 1001/1000
[[Mapping]] (for 2, 3, 7/5, 11/5, 13/5): [{{val|1 5 2 0 1}}, {{val|0 -9 -4 3 1}}]
Mapping generators: ~2, ~13/10
{{Vals|legend=1| 21, 29, 37 }}
</div></div>
==== Intervals ====
Sortable table of intervals in the Dylathian mode and their Tridec interpretations:
{| class="wikitable right-2 right-3 right-4 sortable"
|-
! Degree
! Size in 21edo
! Size in 29edo
! Size in 37edo
! Size in POTE tuning
! Note name on Q
! class="unsortable"| Approximate ratios
! #Gens up
|-
| 1
| 0\21, 0.00
| 0\29, 0.00
| 0\37, 0.00
| 0.00
| Q
| 1/1
| 0
|-
| 2
| 3\21, 171.43
| 4\29, 165.52
| 5\37, 163.16
| 165.65
| J
| 11/10, 10/9
| +3
|-
| 3
| 6\21, 342.86
| 8\29, 331.03
| 10\37, 324.32
| 331.31
| K
| 11/9, 6/5
| +6
|-
| 4
| 8\21, 457.14
| 11\29, 455.17
| 14\37, 454.05
| 455.17
| L
| 13/10, 9/7
| +1
|-
| 5
| 11\21, 628.57
| 15\29, 620.69
| 19\37, 616.22
| 620.87
| M
| 13/9, 10/7
| +4
|-
| 6
| 14\21, 800.00
| 19\29, 786.21
| 23\37, 778.38
| 786.52
| N
| 11/7
| +7
|-
| 7
| 16\21, 914.29
| 22\29, 910.34
| 28\37, 908.11
| 910.44
| O
| 22/13
| +2
|-
| 8
| 19\21, 1085.71
| 26\29, 1075.86
| 33\37, 1070.27
| 1076.09
| P
| 13/7, 28/15
| +5
|}
=== Petrtri ===
Subgroup: 2.5.9.11.13.17
Period: 1\1
Optimal ([[POTE]]) generator: 459.1502
EDO generators: [[13edo|5\13]], [[21edo|8\21]], [[34edo|13\34]]
<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">
[[Comma]] list: 100/99, 144/143, 170/169, 221/220
[[Mapping]] (for 2, 5, 9, 11, 13, 17): [{{val|1 5 7 5 6 6}}, {{val|0 -7 -10 -4 -6 -5}}]
Mapping generators: ~2, ~13/10
{{Vals|legend=1| 13, 21, 34 }}
</div></div>
==== Intervals ====
Sortable table of intervals in the Dylathian mode and their Petrtri interpretations:
{| class="wikitable right-2 right-3 right-4 right-5 sortable"
|-
! Degree
! Size in 13edo
! Size in 21edo
! Size in 34edo
! Size in POTE tuning
! Note name on Q
! class="unsortable"| Approximate ratios
! #Gens up
|-
| 1
| 0\13, 0.00
| 0\21, 0.00
| 0\34, 0.00
| 0.00
| Q
| 1/1
| 0
|-
| 2
| 2\13, 184.62
| 3\21, 171.43
| 5\34, 176.47
| 177.45
| J
| 10/9, 11/10
| +3
|-
| 3
| 4\13, 369.23
| 6\21, 342.86
| 10\34, 352.94
| 354.90
| K
| 11/9, 16/13
| +6
|-
| 4
| 5\13, 461.54
| 8\21, 457.14
| 13\34, 458.82
| 459.15
| L
| 13/10, 17/13, 22/17
| +1
|-
| 5
| 7\13, 646.15
| 11\21, 628.57
| 18\34, 635.294
| 636.60
| M
| 13/9, 16/11, 23/16 (esp. 21edo)
| +4
|-
| 6
| 9\13, 830.77
| 14\21, 800.00
| 23\34, 811.77
| 814.05
| N
| 8/5
| +7
|-
| 7
| 10\13, 923.08
| 16\21, 914.29
| 26\34, 917.65
| 918.30
| O
| 17/10
| +2
|-
| 8
| 12\13, 1107.69
| 19\21, 1085.71
| 31\34, 1094.12
| 1095.75
| P
| 17/9, 32/17, 15/8
| +5
|}
=== A-Team ===
Subgroup: 2.5.9.21
Period: 1\1
Optimal ([[POTE]]) generator: 464.3865
EDO generators: [[13edo|5\13]], [[18edo|7\18]], [[31edo|12\31]], [[44edo|17\44]]
<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">
[[Comma]] list: 81/80, 1029/1024
[[Mapping]] (for 2, 5, 9, 21): [{{val|1 0 2 4}}, {{val|0 6 3 1}}]
Mapping generators: ~2, ~21/16
{{Vals|legend=1| 13, 18, 31, 44 }}
</div></div>
==== Intervals ====
Sortable table of intervals in the Dylathian mode and their A-Team interpretations:
{| class="wikitable right-2 right-3 right-4 sortable"
|-
! Degree
! Size in 13edo
! Size in 18edo
! Size in 31edo
! Note name on Q
! class="unsortable"| Approximate ratios<ref>The ratio interpretations that are not valid for 18edo are italicized.</ref>
! #Gens up
|-
| 1
| 0\13, 0.00
| 0\18, 0.00
| 0\31, 0.00
| Q
| 1/1
| 0
|-
| 2
| 2\13, 184.62
| 3\18, 200.00
| 5\31, 193.55
| J
| 9/8, 10/9
| +3
|-
| 3
| 4\13, 369.23
| 6\18, 400.00
| 10\31, 387.10
| K
| 5/4
| +6
|-
| 4
| 5\13, 461.54
| 7\18, 466.67
| 12\31, 464.52
| L
| 21/16, ''13/10''
| +1
|-
| 5
| 7\13, 646.15
| 10\18, 666.66
| 17\31, 658.06
| M
| ''13/9'', ''16/11''
| +4
|-
| 6
| 9\13, 830.77
| 13\18, 866.66
| 22\31, 851.61
| N
| ''13/8'', ''18/11''
| +7
|-
| 7
| 10\13, 923.08
| 14\18, 933.33
| 24\31, 929.03
| O
| 12/7
| +2
|-
| 8
| 12\13, 1107.69
| 17\18, 1133.33
| 29\31, 1122.58
| P
|
| +5
|}
<references/>
=== Buzzard ===
Subgroup: 2.3.5.7
Period: 1\1
Optimal ([[POTE]]) generator: ~21/16 = 475.636
EDO generators: [[38edo|15\38]], [[43edo|17\43]], [[48edo|19\48]], [[53edo|21\53]], [[58edo|23\58]], [[63edo|25\63]]
<div class="toccolours mw-collapsible mw-collapsed" style="width:600px; overflow:auto;">
<div style="line-height:1.6;">Technical data</div>
<div class="mw-collapsible-content">
Commas: 1728/1715, 5120/5103
Map: [&lt;1 0 -6 4|, &lt;0 4 21 -3|]
Mapping generators: ~2, ~21/16
Wedgie: &lt;&lt;4 21 -3 24 -16 -66||
{{Vals| 48, 53, 111, 164d, 275d}}
Badness: 0.0480
</div></div>
==== Intervals ====
Sortable table of intervals in the Dylathian mode and their Buzzard interpretations:
{| class="wikitable right-2 right-3 right-4 right-5 sortable"
|-
! Degree
! Size in 38edo
! Size in 53edo
! Size in 63edo
! Size in POTE tuning
! Note name on Q
! class="unsortable"| Approximate ratios
! #Gens up
|-
| 1
| 0\38, 0.00
| 0\53, 0.00
| 0\63, 0.00
| 0.00
| Q
| 1/1
| 0
|-
| 2
| 7\38, 221.05
| 10\53, 226.42
| 12\63, 228.57
| 227.07
| J
| 8/7
| +3
|-
| 3
| 14\38, 442.10
| 20\53, 452.83
| 24\63, 457.14
| 453.81
| K
| 13/10, 9/7
| +6
|-
| 4
| 15\38, 473.68
| 21\53, 475.47
| 25\63, 476.19
| 475.63
| L
| 21/16
| +1
|-
| 5
| 22\38, 694.73
| 31\53, 701.89
| 37\63, 704.76
| 702.54
| M
| 3/2
| +4
|-
| 6
| 29\38, 915.78
| 41\53, 928.30
| 49\63, 933.33
| 929.45
| N
| 12/7, 22/13
| +7
|-
| 7
| 30\38, 947.36
| 42\53, 950.94
| 50\63, 952.38
| 951.27
| O
| 26/15
| +2
|-
| 8
| 37\38, 1168.42
| 52\53, 1177.36
| 62\63, 1180.95
| 1178.18
| P
| 108/55, 160/81
| +5
|}


== Samples ==
== Samples ==