5L 3s: Difference between revisions
Line 483: | Line 483: | ||
The three major edos in this range, [[13edo]], [[21edo]] and [[34edo]], all nominally support petrtri. | The three major edos in this range, [[13edo]], [[21edo]] and [[34edo]], all nominally support petrtri. | ||
* [[13edo]] nominally supports it, but its approximation of 9:10:11:13 is quite weak and tempers 11/9 to a 369¢ submajor third, which may not be desirable. | * [[13edo]] nominally supports it, but its approximation of 9:10:11:13 is quite weak and tempers 11/9 to a 369¢ submajor third, which may not be desirable. | ||
* [[21edo]] is | * [[21edo]] is a much better petrtri tuning than 13edo, in terms of approximating 9:10:11:13. 21edo will serve those who like the combination of neogothic minor thirds (285.71¢) and Baroque diatonic semitones (114.29¢, close to quarter-comma meantone's 117.11¢). | ||
* [[34edo]] is close to optimal for the temperament, with a generator only 0.33¢ flat of the 2.5.9.11.13.17 [[POTE]] petrtri generator of 459.1502¢ and 0.73¢ sharp of the 2.9/5.11/5.13/5 POTE (i.e. optimal for the chord 9:10:11:13, spelled as R-M2-M3-M5 in oneirotonic intervals) petrtri generator of 458.0950¢. | * [[34edo]] is close to optimal for the temperament, with a generator only 0.33¢ flat of the 2.5.9.11.13.17 [[POTE]] petrtri generator of 459.1502¢ and 0.73¢ sharp of the 2.9/5.11/5.13/5 POTE (i.e. optimal for the chord 9:10:11:13, spelled as R-M2-M3-M5 in oneirotonic intervals) petrtri generator of 458.0950¢. | ||
* If you only care about optimizing 9:10:11:13, then [[55edo]]'s 21\55 (458.182¢) is even better, but 55 is a bit big for a usable edo. | * If you only care about optimizing 9:10:11:13, then [[55edo]]'s 21\55 (458.182¢) is even better, but 55 is a bit big for a usable edo. |