The wedgie: Difference between revisions

Inthar (talk | contribs)
Inthar (talk | contribs)
Line 26: Line 26:
The period ''p'' (fraction of octave) and generator ''g'' form a basis for all the intervals of a rank-2 temperament. For example, p = 2/1 and g = 3/2 form a basis for meantone. But from a linear algebra perspective, there's nothing special about the basis {p, g}; I could have chosen the basis p' = 3/1 and g' = 2/1. What makes the wedgie a unique identifier for a temperament is that rather than specify a basis directly, the wedgie acts more like a set of constraints that any basis for the temperament must satisfy.  
The period ''p'' (fraction of octave) and generator ''g'' form a basis for all the intervals of a rank-2 temperament. For example, p = 2/1 and g = 3/2 form a basis for meantone. But from a linear algebra perspective, there's nothing special about the basis {p, g}; I could have chosen the basis p' = 3/1 and g' = 2/1. What makes the wedgie a unique identifier for a temperament is that rather than specify a basis directly, the wedgie acts more like a set of constraints that any basis for the temperament must satisfy.  


In the language of linear algebra, the wedgie is an "alternating bilinear form" on the appropriate JI group M; this means that it acts like the operation of finding the determinant of two vectors on the appropriate quotient module M' = M/K of M, where K is the kernel of the biliear form W. Using the fact that W = a&b where a and b are two edos (properly, rank-1 [[val]]s), you can verify that K is exactly the kernel of the rank-2 temperament. In geometric terms, given JI ratios u and v, and wedgie W, the number W(u,v) is the signed area of the parallelogram spanned by (tempered versions of) u and v. The entries of the wedgie give the values of the wedgie on the basis elements of the JI subgroup that the temperament is on. By the alternating property [i.e. W(u, v) = -W(v, u)] and bilinearity [W is linear in each argument separately], specifying the values on basis elements of the JI subgroup is enough to define W as an alternating bilinear form on all of the JI subgroup. This is the determinant of the tempered versions of u and v.
In the language of linear algebra, the wedgie is an "alternating bilinear form" on the appropriate JI group M; this means that it acts like the operation of finding the determinant of two vectors on the appropriate quotient group M' = M/K of M, where K is the kernel of the biliear form W. Using the fact that W = a&b where a and b are two edos (properly, rank-1 [[val]]s), you can verify that K is exactly the kernel of the rank-2 temperament, and thus that M' is the group of intervals in the rank-2 temperament in question. In geometric terms, given JI ratios u and v, and wedgie W, the number W(u,v) is the signed area of the parallelogram spanned by (tempered versions of) u and v. The entries of the wedgie give the values of the wedgie on the basis elements of the JI subgroup that the temperament is on. By the alternating property [i.e. W(u, v) = -W(v, u)] and bilinearity [W is linear in each argument separately], specifying the values on basis elements of the JI subgroup is enough to define W as an alternating bilinear form on all of the JI subgroup. This is the determinant of the tempered versions of u and v.


[The musical interpretation of the parallelogram spanned by u and v is: If you want to consider intervals that are multiples of u apart the same note (for example, if you want an octave-equivalent scale), W(u, v) tells you how many generators it take to get to v.]
[The musical interpretation of the parallelogram spanned by u and v is: If you want to consider intervals that are multiples of u apart the same note (for example, if you want an octave-equivalent scale), W(u, v) tells you how many generators it take to get to v.]
Line 34: Line 34:
Let d = gcd(W(2, q_1), ..., W(2, q_n)). This tells you that for any JI ratio v in your JI subgroup, W(2, v) = 2n(v) for some number n(v) [that depends linearly on v]. This equation is also true when we replace 2 with any JI ratio u that is equated to 2. This tells us that for W(p, g) = 1, we (up to some choices) need p to be an interval such that d*p is equated to 2/1, i.e. p represents 1/d of the octave.
Let d = gcd(W(2, q_1), ..., W(2, q_n)). This tells you that for any JI ratio v in your JI subgroup, W(2, v) = 2n(v) for some number n(v) [that depends linearly on v]. This equation is also true when we replace 2 with any JI ratio u that is equated to 2. This tells us that for W(p, g) = 1, we (up to some choices) need p to be an interval such that d*p is equated to 2/1, i.e. p represents 1/d of the octave.


Choose a basis e1, e2 for the module and write 2/1 = a1 e1 + a2 e2. Then:
Choose a basis e1, e2 for the temperament group and write 2/1 = a1 e1 + a2 e2. Then:
*W(2/1, e1) = W(a2 e2, e1) = -a2 W(e1, e2) = -a2
*W(2/1, e1) = W(a2 e2, e1) = -a2 W(e1, e2) = -a2
*W(2/1,e2) = W(a1e1, e2) = a1 W(e1, e2) = a1.
*W(2/1,e2) = W(a1e1, e2) = a1 W(e1, e2) = a1.