51edo: Difference between revisions
m Moving from Category:Edo to Category:Equal divisions of the octave using Cat-a-lot |
m Added EDO info box, intervals table, and notation |
||
Line 1: | Line 1: | ||
{{Infobox ET | |||
| Prime factorization = 3 × 17 | |||
| Step size = 23.52941¢ | |||
| Fifth = 30\51 ≈ 706¢ | |||
| Major 2nd = 9\51 ≈ 212¢ | |||
| Minor 2nd = 3\51 ≈ 71¢ | |||
| Augmented 1sn = 6\51 ≈ 141¢ | |||
}} | |||
== Theory == | |||
{{primes in edo|51}} | |||
'''51-EDO''' divides the [[Octave|octave]] into 51 equal parts of 23.529 [[cent|cent]]s each, which is about the size of the [http://en.wikipedia.org/wiki/Pythagorean_comma Pythagorean comma] (even though this comma itself is mapped to a different interval). It tempers out [[250/243|250/243]] in the [[5-limit|5-limit]], [[225/224|225/224]] and [[2401/2400|2401/2400]] in the [[7-limit|7-limit]], and [[55/54|55/54]] and [[100/99|100/99]] in the [[11-limit|11-limit]]. It is the [[Optimal_patent_val|optimal patent val]] for [[Porcupine_rank_three_family|sonic]], the rank three temperament tempering out 250/243, 55/54 and 100/99, and also for the rank four temperament tempering out 55/54. It provides an alternative tuning to [[22edo|22edo]] for [[Porcupine_family|porcupine temperament]], with a nice fifth but a rather flat major third, and the optimal patent val for 7 and 11-limit [[Porcupine_family#Porky|porky temperament]], which is sonic plus 225/224. | |||
== Intervals == | |||
{| class="wikitable center-all right-2 left-3" | |||
|- | |||
! Degrees | |||
! [[Cents|Cents]] | |||
! colspan="3" | [[Ups and Downs Notation]] | |||
|- | |||
| 0 | |||
| 0.000 | |||
| Perfect 1sn | |||
| P1 | |||
| D | |||
|- | |||
| 1 | |||
| 23.529 | |||
| Up 1sn | |||
| ^1 | |||
| ^D | |||
|- | |||
| 2 | |||
| 47.059 | |||
| Downminor 2nd | |||
| vm2 | |||
| vEb | |||
|- | |||
| 3 | |||
| 70.588 | |||
| Minor 2nd | |||
| m2 | |||
| Eb | |||
|- | |||
| 4 | |||
| 94.118 | |||
| Upminor 2nd | |||
| ^m2 | |||
| ^Eb | |||
|- | |||
| 5 | |||
| 117.647 | |||
| Downmid 2nd | |||
| v~2 | |||
| ^^Eb | |||
|- | |||
| 6 | |||
| 141.176 | |||
| Mid 2nd | |||
| ~2 | |||
| vvvE, ^^^Eb | |||
|- | |||
| 7 | |||
| 164.706 | |||
| Upmid 2nd | |||
| ^~2 | |||
| vvE | |||
|- | |||
| 8 | |||
| 188.235 | |||
| Downmajor 2nd | |||
| vM2 | |||
| vE | |||
|- | |||
| 9 | |||
| 211.765 | |||
| Major 2nd | |||
| M2 | |||
| E | |||
|- | |||
| 10 | |||
| 235.294 | |||
| Upmajor 2nd | |||
| ^M2 | |||
| ^E | |||
|- | |||
| 11 | |||
| 258.824 | |||
| Downminor 3rd | |||
| vm3 | |||
| vF | |||
|- | |||
| 12 | |||
| 282.353 | |||
| Minor 3rd | |||
| m3 | |||
| F | |||
|- | |||
| 13 | |||
| 305.882 | |||
| Upminor 3rd | |||
| ^m3 | |||
| ^F | |||
|- | |||
| 14 | |||
| 329.412 | |||
| Downmid 3rd | |||
| v~3 | |||
| ^^F | |||
|- | |||
| 15 | |||
| 352.941 | |||
| Mid 3rd | |||
| ~3 | |||
| ^^^F, vvvF# | |||
|- | |||
| 16 | |||
| 376.471 | |||
| Upmid 3rd | |||
| ^~3 | |||
| vvF# | |||
|- | |||
| 17 | |||
| 400.000 | |||
| Downmajor 3rd | |||
| vM3 | |||
| vF# | |||
|- | |||
| 18 | |||
| 423.529 | |||
| Major 3rd | |||
| M3 | |||
| F# | |||
|- | |||
| 19 | |||
| 447.509 | |||
| Upmajor 3rd | |||
| ^M3 | |||
| ^F# | |||
|- | |||
| 20 | |||
| 470.588 | |||
| Down 4th | |||
| v4 | |||
| vG | |||
|- | |||
| 21 | |||
| 494.118 | |||
| Perfect 4th | |||
| P4 | |||
| G | |||
|- | |||
| 22 | |||
| 517.647 | |||
| Up 4th | |||
| ^1 | |||
| ^G | |||
|- | |||
| 23 | |||
| 541.176 | |||
| Downdim 5th | |||
| vd5 | |||
| vAb | |||
|- | |||
| 24 | |||
| 564.706 | |||
| Dim 5th | |||
| d5 | |||
| Ab | |||
|- | |||
| 25 | |||
| 588.235 | |||
| Updim 5th | |||
| ^d5 | |||
| ^Ab | |||
|- | |||
| 26 | |||
| 611.765 | |||
| Downaug 4th | |||
| vA4 | |||
| vG# | |||
|- | |||
| 27 | |||
| 635.294 | |||
| Aug 4th | |||
| A4 | |||
| G# | |||
|- | |||
| 28 | |||
| 658.824 | |||
| Upaug 4th | |||
| ^A4 | |||
| ^G# | |||
|- | |||
| 29 | |||
| 682.353 | |||
| Down 5th | |||
| v5 | |||
| vA | |||
|- | |||
| 30 | |||
| 705.882 | |||
| Perfect 5th | |||
| P5 | |||
| A | |||
|- | |||
| 31 | |||
| 729.412 | |||
| Up 5th | |||
| ^5 | |||
| ^A | |||
|- | |||
| 32 | |||
| 752.941 | |||
| Downminor 6th | |||
| vm6 | |||
| vBb | |||
|- | |||
| 33 | |||
| 776.471 | |||
| Minor 6th | |||
| m6 | |||
| Bb | |||
|- | |||
| 34 | |||
| 800.000 | |||
| Upminor 6th | |||
| ^m6 | |||
| ^Bb | |||
|- | |||
| 35 | |||
| 823.529 | |||
| Downmid 6th | |||
| v~6 | |||
| ^^Bb | |||
|- | |||
| 36 | |||
| 847.059 | |||
| Mid 6th | |||
| ~6 | |||
| vvvB, ^^^Bb | |||
|- | |||
| 37 | |||
| 870.588 | |||
| Upmid 6th | |||
| ^~6 | |||
| vvB | |||
|- | |||
| 38 | |||
| 894.118 | |||
| Downmajor 6th | |||
| vM6 | |||
| vB | |||
|- | |||
| 39 | |||
| 917.647 | |||
| Major 6th | |||
| M6 | |||
| B | |||
|- | |||
| 40 | |||
| 941.176 | |||
| Upmajor 6th | |||
| ^M6 | |||
| ^B | |||
|- | |||
| 41 | |||
| 964.706 | |||
| Downminor 7th | |||
| vm7 | |||
| vC | |||
|- | |||
| 42 | |||
| 988.235 | |||
| Minor 7th | |||
| m7 | |||
| C | |||
|- | |||
| 43 | |||
| 1011.765 | |||
| Upminor 7th | |||
| ^m7 | |||
| ^C | |||
|- | |||
| 44 | |||
| 1035.294 | |||
| Downmid 7th | |||
| v~7 | |||
| ^^C | |||
|- | |||
| 45 | |||
| 1058.824 | |||
| Mid 7th | |||
| ~7 | |||
| ^^^C, vvvC# | |||
|- | |||
| 46 | |||
| 1082.353 | |||
| Upmid 7th | |||
| ^~7 | |||
| vvC# | |||
|- | |||
| 47 | |||
| 1105.882 | |||
| Downmajor 7th | |||
| vM7 | |||
| vC# | |||
|- | |||
| 48 | |||
| 1129.412 | |||
| Major 7th | |||
| M7 | |||
| C# | |||
|- | |||
| 49 | |||
| 1152.941 | |||
| Upmajor 7th | |||
| ^M7 | |||
| ^C# | |||
|- | |||
| 50 | |||
| 1176.471 | |||
| Down 8ve | |||
| v8 | |||
| vD | |||
|- | |||
| 51 | |||
| 1200.000 | |||
| Perfect 8ve | |||
| P8 | |||
| D | |||
|} | |||
[[Category:51edo]] | [[Category:51edo]] | ||
[[Category:Equal divisions of the octave]] | [[Category:Equal divisions of the octave]] | ||
[[Category:theory]] | [[Category:theory]] |