Würschmidt family: Difference between revisions
m link to comma page |
m fixed header levels, simplified wiki markup, added links |
||
Line 1: | Line 1: | ||
The [[5-limit]] parent comma for the '''würschmidt family''' is [[393216/390625]], known as Würschmidt's comma, and named after José Würschmidt, Its [[monzo]] is |17 1 -8>, and flipping that yields <<8 1 17|| for the wedgie. This tells us the [[generator]] is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Würschmidt comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the [[minimax tuning]]. Würschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28, 31 and 34 note [[MOS]] all possibilities. | |||
Würschmidt | |||
[[POTE generator]]: 387.799 | |||
Map: [<1 7 3|, <0 -8 -1|] | Map: [<1 7 3|, <0 -8 -1|] | ||
EDOs: | EDOs: {{EDOs| 31, 34, 65, 99, 164, 721c, 885c }} | ||
[http://chrisvaisvil.com/ancient-stardust-wurschmidt13/ Ancient Stardust] [http://micro.soonlabel.com/jake_freivald/tunings_by_jake_freivald/20130811_wurschmidt%5b13%5d.mp3 play] by Chris Vaisvil | [http://chrisvaisvil.com/ancient-stardust-wurschmidt13/ Ancient Stardust] [http://micro.soonlabel.com/jake_freivald/tunings_by_jake_freivald/20130811_wurschmidt%5b13%5d.mp3 play] by Chris Vaisvil | ||
Line 16: | Line 13: | ||
[http://micro.soonlabel.com/gene_ward_smith/Others/Freivald/Wurschmidt%5b16%5d-out.mp3 Extrospection] by [https://soundcloud.com/jdfreivald/extrospection Jake Freivald]; Würschmidt[16] tuned in 31et. | [http://micro.soonlabel.com/gene_ward_smith/Others/Freivald/Wurschmidt%5b16%5d-out.mp3 Extrospection] by [https://soundcloud.com/jdfreivald/extrospection Jake Freivald]; Würschmidt[16] tuned in 31et. | ||
==Seven limit children== | == Seven limit children == | ||
The second comma of the [[Normal_lists|normal comma list]] defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1>, worschmidt adds 65625/65536 = |-16 1 5 1>, whirrschmidt adds 4375/4374 = |-1 -7 4 1> and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2>. | The second comma of the [[Normal_lists|normal comma list]] defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1>, worschmidt adds 65625/65536 = |-16 1 5 1>, whirrschmidt adds 4375/4374 = |-1 -7 4 1> and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2>. | ||
=Würschmidt= | == Würschmidt == | ||
Würschmidt, aside from the commas listed above, also tempers out 225/224. [[31edo]] or [[127edo]] can be used as tunings. Würschmidt has <<8 1 18 -17 6 39|| for a wedgie. It extends naturally to an 11-limit version <<8 1 18 20 ,,,|| which also tempers out 99/98, 176/175 and 243/242. [[127edo]] is again an excellent tuning for 11-limit wurschmidt, as well as for minerva, the 11-limit rank three temperament tempering out 99/98 and 176/175. | |||
[[ | Commas: [[225/224]], 8748/8575 | ||
[[POTE generator]]: 387.383 | |||
Map: [<1 7 3 15|, <0 -8 -1 -18|] | Map: [<1 7 3 15|, <0 -8 -1 -18|] | ||
EDOs: | EDOs: {{EDOs| 31, 96, 127, 28bd, 412bd }} | ||
Badness: 0.0508 | Badness: 0.0508 | ||
==11-limit== | === 11-limit === | ||
Commas: 99/98, 176/175, 243/242 | |||
Commas: [[99/98]], 176/175, [[243/242]] | |||
POTE generator: ~5/4 = 387.447 | POTE generator: ~5/4 = 387.447 | ||
Line 39: | Line 39: | ||
Map: [<1 7 3 15 17|, <0 -8 -1 -18 -20|] | Map: [<1 7 3 15 17|, <0 -8 -1 -18 -20|] | ||
EDOs: 31, 65d, 96, 127, 223d | EDOs: {{EDOs| 31, 65d, 96, 127, 223d }} | ||
Badness: 0.0244 | Badness: 0.0244 | ||
==13-limit== | === 13-limit === | ||
Commas: 99/98, 144/143, 176/175, 275/273 | |||
Commas: [[99/98]], [[144/143]], 176/175, 275/273 | |||
POTE generator: ~5/4 = 387.626 | POTE generator: ~5/4 = 387.626 | ||
Line 50: | Line 51: | ||
Map: [<1 7 3 15 17 1|, <0 -8 -1 -18 -20 4|] | Map: [<1 7 3 15 17 1|, <0 -8 -1 -18 -20 4|] | ||
EDOs: 31, 65d, 161df | EDOs: {{EDOs| 31, 65d, 161df }} | ||
Badness: 0.0236 | Badness: 0.0236 | ||
==Worseschmidt== | == Worseschmidt == | ||
Commas: 66/65, 99/98, 105/104, 243/242 | |||
Commas: 66/65, [[99/98]], 105/104, [[243/242]] | |||
POTE generator: ~5/4 = 387.099 | POTE generator: ~5/4 = 387.099 | ||
Line 61: | Line 63: | ||
Map: [<1 7 3 15 17 22|, <0 -8 -1 -18 -20 -27|] | Map: [<1 7 3 15 17 22|, <0 -8 -1 -18 -20 -27|] | ||
EDOs: 31 | EDOs: {{EDOs| 31 }} | ||
Badness: 0.0344 | Badness: 0.0344 | ||
=Worschmidt= | == Worschmidt == | ||
Worschmidt tempers out 126/125 rather than 225/224, and can use [[ | |||
Worschmidt tempers out 126/125 rather than 225/224, and can use [[31edo]], [[34edo]], or [[127edo]] as a tuning. If 127 is used, note that the val is <127 201 295 356| and not <127 201 295 357| as with wurschmidt. The wedgie now is <<8 1 -13 -17 -43 -33|. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore. | |||
Commas: 126/125, 33075/32768 | Commas: [[126/125]], 33075/32768 | ||
[[ | [[POTE generator]]: 387.392 | ||
Map: [<1 7 3 -6|, <0 -8 -1 13|] | Map: [<1 7 3 -6|, <0 -8 -1 13|] | ||
EDOs: | EDOs: {{EDOs| 31, 65, 96d, 127d }} | ||
Badness: 0.0646 | Badness: 0.0646 | ||
==11-limit== | === 11-limit === | ||
Commas: 126/125, 243/242, 385/384 | Commas: 126/125, 243/242, 385/384 | ||
Line 85: | Line 89: | ||
Map: [<1 7 3 -6 17|, <0 -8 -1 13 -20|] | Map: [<1 7 3 -6 17|, <0 -8 -1 13 -20|] | ||
EDOs: 31, 65, 96d, 127d | EDOs: {{EDOs| 31, 65, 96d, 127d }} | ||
Badness: 0.0334 | Badness: 0.0334 | ||
=Whirrschmidt= | == Whirrschmidt == | ||
[[ | |||
[[99edo]] is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with <<8 1 52 -17 60 118|| for a wedgie. | |||
Commas: 4375/4374, 393216/390625 | Commas: 4375/4374, 393216/390625 | ||
[[ | [[POTE generator]]: 387.881 | ||
Map: [<1 7 3 38|, <0 -8 -1 -52|] | Map: [<1 7 3 38|, <0 -8 -1 -52|] | ||
EDOs: | EDOs: {{EDOs| 31, 34, 65, 99 }} | ||
=Hemiwürschmidt= | == Hemiwürschmidt == | ||
Hemiwürschmidt, which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out 3136/3125, 6144/6125 and 2401/2400. [[ | |||
Hemiwürschmidt, which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out [[3136/3125]], 6144/6125 and 2401/2400. [[68edo]], [[99edo]] and [[130edo]] can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwürschmidt extends to a higher limit temperament, <<16 2 5 40 -39 -49 -48 28... | |||
Commas: 2401/2400, 3136/3125 | Commas: 2401/2400, 3136/3125 | ||
[[ | [[POTE generator]]: ~28/25 = 193.898 | ||
Map: [<1 15 4 7|, <0 -16 -2 -5|] | Map: [<1 15 4 7|, <0 -16 -2 -5|] | ||
Line 111: | Line 117: | ||
<<16 2 5 -34 -37 6|| | <<16 2 5 -34 -37 6|| | ||
EDOs: | EDOs: {{EDOs| 6, 31, 37, 68, 99, 229, 328, 557c, 885c }} | ||
Badness: 0.0203 | Badness: 0.0203 | ||
==11-limit== | === 11-limit === | ||
Commas: 243/242, 441/440, 3136/3125 | Commas: 243/242, 441/440, 3136/3125 | ||
[[ | [[POTE generator]]: ~28/25 = 193.840 | ||
Map: [<1 15 4 7 37|, <0 -16 -2 -5 -40|] | Map: [<1 15 4 7 37|, <0 -16 -2 -5 -40|] | ||
EDOs: 31, 99e, 130, 650ce, 811ce | EDOs: {{EDOs| 31, 99e, 130, 650ce, 811ce }} | ||
Badness: 0.0211 | Badness: 0.0211 | ||
===13-limit=== | === 13-limit === | ||
Commas: 243/242 351/350 441/440 3584/3575 | Commas: 243/242 351/350 441/440 3584/3575 | ||
Line 133: | Line 141: | ||
Map: [<1 15 4 7 37 -29|, <0 -16 -2 -5 -40 39|] | Map: [<1 15 4 7 37 -29|, <0 -16 -2 -5 -40 39|] | ||
EDOs: 31, 99e, 130, 291, 421e, 551ce | EDOs: {{EDOs| 31, 99e, 130, 291, 421e, 551ce }} | ||
Badness: 0.0231 | Badness: 0.0231 | ||
== Hemithir == | |||
Commas: 121/120 176/175 196/195 275/273 | Commas: 121/120 176/175 196/195 275/273 | ||
Line 144: | Line 153: | ||
Map: [<1 15 4 7 37 -3|, <0 -16 -2 -5 -40 8|] | Map: [<1 15 4 7 37 -3|, <0 -16 -2 -5 -40 8|] | ||
EDOs: 31, 68e, 99ef | EDOs: {{EDOs| 31, 68e, 99ef }} | ||
Badness: 0.0312 | Badness: 0.0312 | ||
==Hemiwur== | == Hemiwur == | ||
Commas: 121/120, 176/175, 1375/1372 | Commas: 121/120, 176/175, 1375/1372 | ||
Line 155: | Line 165: | ||
Map: [<1 15 4 7 11|, <0 -16 -2 -5 -9|] | Map: [<1 15 4 7 11|, <0 -16 -2 -5 -9|] | ||
EDOs: 6, 31, 68, 99, 130e, 229e | EDOs: {{EDOs| 6, 31, 68, 99, 130e, 229e }} | ||
Badness: 0.0293 | Badness: 0.0293 | ||
===13-limit=== | === 13-limit === | ||
Commas: 121/120, 176/175, 196/195, 275/273 | Commas: 121/120, 176/175, 196/195, 275/273 | ||
Line 166: | Line 177: | ||
Map: [<1 15 4 7 11 -3|, <0 -16 -2 -5 -9 8|] | Map: [<1 15 4 7 11 -3|, <0 -16 -2 -5 -9 8|] | ||
EDOs: 6, 31, 68, 99f, 167ef | EDOs: {{EDOs| 6, 31, 68, 99f, 167ef }} | ||
Badness: 0.0284 | Badness: 0.0284 | ||
== Hemiwar == | |||
Commas: 66/65, 105/104, 121/120, 1375/1372 | Commas: 66/65, 105/104, 121/120, 1375/1372 | ||
Line 177: | Line 189: | ||
Map: [<1 15 4 7 11 23|, <0 -16 -2 -5 -9 -23|] | Map: [<1 15 4 7 11 23|, <0 -16 -2 -5 -9 -23|] | ||
EDOs: 31 | EDOs: {{EDOs| 31 }} | ||
Badness: 0.0449 | Badness: 0.0449 | ||
=Relationships to other temperaments= | == Relationships to other temperaments == | ||
<span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;">around 775.489 which is approximately</span> | <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;">around 775.489 which is approximately</span> | ||
2-Würschmidt, the temperament with all the same commas as Würschmidt but a generator of twice the size, is equivalent to [[ | 2-Würschmidt, the temperament with all the same commas as Würschmidt but a generator of twice the size, is equivalent to [[skwares]] as a 2.3.7.11 temperament. | ||
[[Category:Theory]] | [[Category:Theory]] |