Talk:33/32: Difference between revisions
No edit summary |
No edit summary |
||
Line 47: | Line 47: | ||
::::: I've read your Function Chart. Indeed, since 33/32 is 385/384 from 36/35 and 896/891 from 28/27, it can have ambiguous qualities. One of the chord progressions I've explored actually requires 245/243 be tempered out and effectively conflate them all. Nonetheless, 33/32 and 11/8 should function coherently. If 33/32 can be a subminor second in some circumstances, 11/8 can be a subdim fifth in the same way. [[User:FloraC|FloraC]] ([[User talk:FloraC|talk]]) 12:54, 19 September 2020 (UTC) | ::::: I've read your Function Chart. Indeed, since 33/32 is 385/384 from 36/35 and 896/891 from 28/27, it can have ambiguous qualities. One of the chord progressions I've explored actually requires 245/243 be tempered out and effectively conflate them all. Nonetheless, 33/32 and 11/8 should function coherently. If 33/32 can be a subminor second in some circumstances, 11/8 can be a subdim fifth in the same way. [[User:FloraC|FloraC]] ([[User talk:FloraC|talk]]) 12:54, 19 September 2020 (UTC) | ||
:::::: After thinking on this a bit, it's clear to me that while one can reasonably construe 11/8 as a sort of sesqui-diminished fifth, this sort of thing is generally uncommon outside of blues music- plus a hemi-augmented fourth is not only the simpler notation for 11/8 but the more common. Thus we can keep 11/8 as is in terms of its names. I have also realized that 33/32 most commonly functions as a sort of parachroma- think something akin to a chroma, but involving primes like 7, 11, or 13- and thus, we can completely scratch the idea of referring to 33/32 as any sort of "undecimal subminor seventh". That said, I can see the article taking note that there are two corresponding paradiatonic intervals- one of these is | :::::: After thinking on this a bit, it's clear to me that while one can reasonably construe 11/8 as a sort of sesqui-diminished fifth, this sort of thing is generally uncommon outside of blues music- plus a hemi-augmented fourth is not only the simpler notation for 11/8 but the more common. Thus we can keep 11/8 as is in terms of its names. I have also realized that 33/32 most commonly functions as a sort of parachroma- think something akin to a chroma, but involving primes like 7, 11, or 13- and thus, we can completely scratch the idea of referring to 33/32 as any sort of "undecimal subminor seventh". That said, I can see the article taking note that there are two corresponding paradiatonic intervals- one of these is 512/495, and the other is 8192/8019. I can also see the article mentioning how when 16384/16335 is tempered out, 33/32 is equated with 512/495. Once that's done, we can worry about the 33/28 minor sixth and its octave counterpart 56/33. Does this sound more reasonable to you? --[[User:Aura|Aura]] ([[User talk:Aura|talk]]) 19:07, 19 September 2020 (UTC) | ||
:: Oh, and Flora, no offense taken. Sorry I didn't say so earlier... Perhaps once I get the musical function map finalized, we can look over it and see if you also think it is a good guide for organizing the interval names- you know, such as whether 33/32 is a prime or a second, or even both at once... --[[User:Aura|Aura]] ([[User talk:Aura|talk]]) 19:57, 18 September 2020 (UTC) | :: Oh, and Flora, no offense taken. Sorry I didn't say so earlier... Perhaps once I get the musical function map finalized, we can look over it and see if you also think it is a good guide for organizing the interval names- you know, such as whether 33/32 is a prime or a second, or even both at once... --[[User:Aura|Aura]] ([[User talk:Aura|talk]]) 19:57, 18 September 2020 (UTC) |