The wedgie: Difference between revisions

Inthar (talk | contribs)
mNo edit summary
Inthar (talk | contribs)
Line 30: Line 30:
The musical interpretation of the parallelogram spanned by u and v is: If you want to consider intervals that are multiples of u apart the same note (for example, if you want an octave-equivalent scale), W(u, v) tells you how many generators it take to get to v.
The musical interpretation of the parallelogram spanned by u and v is: If you want to consider intervals that are multiples of u apart the same note (for example, if you want an octave-equivalent scale), W(u, v) tells you how many generators it take to get to v.


The key fact about the determinant we use here is that two integer vectors v_1, v_2 form a basis for the rank-2 integer lattice '''Z'''<sup>2</sup> iff det(v_1, v_2) = ±1. So find a period and generator for our tempearment, we need a pair of vectors {p, g} such that W(p, g) = 1 and p is 1\d for some integer d.
The key fact about the determinant we use here is that two integer vectors v_1, v_2 form a basis for the rank-2 integer lattice '''Z'''<sup>2</sup> iff det(v_1, v_2) = ±1. So in order to find a period and generator for our tempearment, we need a pair of vectors {p, g} such that W(p, g) = 1 and p is 1\d for some integer d.


Let d = gcd(W(2, q_1), ..., W(2, q_n)). This tells you that for any JI ratio v in your JI subgroup, W(2, v) = 2n(v) for some number n(v) [that depends linearly on v]. This equation is also true when we replace 2 with any JI ratio u that is equated to 2. This tells us that for W(p, g) = 1, we (up to some choices) need p to be an interval such that d*p is equated to 2/1, i.e. p represents 1/d of the octave.
Let d = gcd(W(2, q_1), ..., W(2, q_n)). This tells you that for any JI ratio v in your JI subgroup, W(2, v) = 2n(v) for some number n(v) [that depends linearly on v]. This equation is also true when we replace 2 with any JI ratio u that is equated to 2. This tells us that for W(p, g) = 1, we (up to some choices) need p to be an interval such that d*p is equated to 2/1, i.e. p represents 1/d of the octave.