11-limit: Difference between revisions
Wikispaces>Andrew_Heathwaite **Imported revision 354832096 - Original comment: ** |
Wikispaces>xenjacob **Imported revision 354855404 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:xenjacob|xenjacob]] and made on <tt>2012-07-25 23:47:57 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>354855404</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //11-limit// consists of all [[JustIntonation|justly tuned]] intervals whose numerators and denominators are both products of the primes 2, 3, 5, 7 and 11. Some examples of 11-limit intervals are [[14_11|14/11]], [[11_8|11/8]], [[27_22|27/22]] and [[99_98|99/98]]. The 11 odd-limit consists of intervals whose numerators and denominators, when all factors of two have been removed, are less than or equal to 11. Reduced to an octave, these are the ratios 1/1, 12/11, 11/10, 10/9, 9/8, 8/7, 7/6, 6/5, 11/9, 5/4, 14/11, 9/7, 4/3, 11/8, 7/5, 10/7, 16/11, 3/2, 14/9, 11/7, 8/5, 18/11, 5/3, 12/7, 7/4, 16/9, 9/5, 20/11, 11/6, 2/1. In an 11-limit system, all the ratios of the 11 odd-limit can be treated as potential consonances. | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //11-limit// consists of all [[JustIntonation|justly tuned]] intervals whose numerators and denominators are both products of the primes 2, 3, 5, 7 and 11. Some examples of 11-limit intervals are [[14_11|14/11]], [[11_8|11/8]], [[27_22|27/22]] and [[99_98|99/98]]. The 11 odd-limit consists of intervals whose numerators and denominators, when all factors of two have been removed, are less than or equal to 11. Reduced to an octave, these are the ratios 1/1, 12/11, 11/10, 10/9, 9/8, 8/7, 7/6, 6/5, 11/9, 5/4, 14/11, 9/7, 4/3, 11/8, 7/5, 10/7, 16/11, 3/2, 14/9, 11/7, 8/5, 18/11, 5/3, 12/7, 7/4, 16/9, 9/5, 20/11, 11/6, 2/1. In an 11-limit system, all the ratios of the 11 odd-limit can be treated as potential consonances. | ||
||ratio||harmonic solfege|| | |||
|| 12/11 || fu-sol || | |||
|| 11/10 || mi-fu || | |||
|| 10/9 || re-mi || | |||
|| 9/8 || do-re || | |||
|| 8/7 || ta-do || | |||
|| 7/6 || sol-ta || | |||
|| 6/5 || mi-sol, ti-re || | |||
|| 11/9 || re-fu || | |||
|| 5/4 || do-mi || | |||
|| 14/11 || fu-ta || | |||
|| 9/7 || ta-re || | |||
|| 4/3 || do-fa || | |||
|| 11/8 || do-fu || | |||
|| 7/5 || mi-ta || | |||
|| 10/7 || ta-mi || | |||
|| 16/11 || fu-do || | |||
|| 3/2 || do-sol || | |||
|| 14/9 || re-ta || | |||
|| 11/7 || ta-fu || | |||
|| 8/5 || mi-do || | |||
|| 18/11 || fu-re || | |||
|| 5/3 || sol-mi || | |||
|| 12/7 || ta-sol || | |||
|| 7/4 || do-ta || | |||
|| 16/9 || re-do || | |||
|| 9/5 || mi-re || | |||
|| 20/11 || fu-mi || | |||
|| 11/6 || sol-fu || | |||
|| 2/1 || do-do || | |||
While the [[7-limit]] introduces subminor and supermajor intervals, which can sound like dramatic inflections of the familiar interval categories of [[12edo]], the 11-limit introduces neutral intervals, [[superfourth]]s and [[subfifth]]s, which fall in between major, minor and perfect [[interval category|interval categories]] and thus demand new distinctions. It is thus inescapably xenharmonic. | While the [[7-limit]] introduces subminor and supermajor intervals, which can sound like dramatic inflections of the familiar interval categories of [[12edo]], the 11-limit introduces neutral intervals, [[superfourth]]s and [[subfifth]]s, which fall in between major, minor and perfect [[interval category|interval categories]] and thus demand new distinctions. It is thus inescapably xenharmonic. | ||
Line 33: | Line 64: | ||
=Music= | =Music= | ||
[[http://sonic-arts.org/hill/10-passages-ji/10-passages-ji.htm|Study #3]] //[[http://sonic-arts.org/hill/10-passages-ji/04_hill_study-3.mp3|play]]// by [[Dave Hill]] | [[http://sonic-arts.org/hill/10-passages-ji/10-passages-ji.htm|Study #3]] ////[[http://sonic-arts.org/hill/10-passages-ji/04_hill_study-3.mp3|play]]//// by [[Dave Hill]] | ||
[[http://sonic-arts.org/hill/10-passages-ji/10-passages-ji.htm|Brief 11-ratio composition]] //[[http://sonic-arts.org/hill/10-passages-ji/09_hill_brief-11-ratio-composition.mp3|play]]// by Dave Hill | [[http://sonic-arts.org/hill/10-passages-ji/10-passages-ji.htm|Brief 11-ratio composition]] ////[[http://sonic-arts.org/hill/10-passages-ji/09_hill_brief-11-ratio-composition.mp3|play]]//// by Dave Hill | ||
//[[http://micro.soonlabel.com/just/11-limit/20120210-piano-11-limit.mp3|11 Limit Piano]]// by [[Chris Vaisvil]] | ////[[http://micro.soonlabel.com/just/11-limit/20120210-piano-11-limit.mp3|11 Limit Piano]]//// by [[Chris Vaisvil]] | ||
=See also= | =See also= | ||
Line 42: | Line 73: | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>11-limit</title></head><body>The <em>11-limit</em> consists of all <a class="wiki_link" href="/JustIntonation">justly tuned</a> intervals whose numerators and denominators are both products of the primes 2, 3, 5, 7 and 11. Some examples of 11-limit intervals are <a class="wiki_link" href="/14_11">14/11</a>, <a class="wiki_link" href="/11_8">11/8</a>, <a class="wiki_link" href="/27_22">27/22</a> and <a class="wiki_link" href="/99_98">99/98</a>. The 11 odd-limit consists of intervals whose numerators and denominators, when all factors of two have been removed, are less than or equal to 11. Reduced to an octave, these are the ratios 1/1, 12/11, 11/10, 10/9, 9/8, 8/7, 7/6, 6/5, 11/9, 5/4, 14/11, 9/7, 4/3, 11/8, 7/5, 10/7, 16/11, 3/2, 14/9, 11/7, 8/5, 18/11, 5/3, 12/7, 7/4, 16/9, 9/5, 20/11, 11/6, 2/1. In an 11-limit system, all the ratios of the 11 odd-limit can be treated as potential consonances.<br /> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>11-limit</title></head><body>The <em>11-limit</em> consists of all <a class="wiki_link" href="/JustIntonation">justly tuned</a> intervals whose numerators and denominators are both products of the primes 2, 3, 5, 7 and 11. Some examples of 11-limit intervals are <a class="wiki_link" href="/14_11">14/11</a>, <a class="wiki_link" href="/11_8">11/8</a>, <a class="wiki_link" href="/27_22">27/22</a> and <a class="wiki_link" href="/99_98">99/98</a>. The 11 odd-limit consists of intervals whose numerators and denominators, when all factors of two have been removed, are less than or equal to 11. Reduced to an octave, these are the ratios 1/1, 12/11, 11/10, 10/9, 9/8, 8/7, 7/6, 6/5, 11/9, 5/4, 14/11, 9/7, 4/3, 11/8, 7/5, 10/7, 16/11, 3/2, 14/9, 11/7, 8/5, 18/11, 5/3, 12/7, 7/4, 16/9, 9/5, 20/11, 11/6, 2/1. In an 11-limit system, all the ratios of the 11 odd-limit can be treated as potential consonances.<br /> | ||
<br /> | |||
<table class="wiki_table"> | |||
<tr> | |||
<td>ratio<br /> | |||
</td> | |||
<td>harmonic solfege<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>12/11<br /> | |||
</td> | |||
<td>fu-sol<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>11/10<br /> | |||
</td> | |||
<td>mi-fu<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>10/9<br /> | |||
</td> | |||
<td>re-mi<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>9/8<br /> | |||
</td> | |||
<td>do-re<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>8/7<br /> | |||
</td> | |||
<td>ta-do<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>7/6<br /> | |||
</td> | |||
<td>sol-ta<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>6/5<br /> | |||
</td> | |||
<td>mi-sol, ti-re<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>11/9<br /> | |||
</td> | |||
<td>re-fu<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>5/4<br /> | |||
</td> | |||
<td>do-mi<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>14/11<br /> | |||
</td> | |||
<td>fu-ta<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>9/7<br /> | |||
</td> | |||
<td>ta-re<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>4/3<br /> | |||
</td> | |||
<td>do-fa<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>11/8<br /> | |||
</td> | |||
<td>do-fu<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>7/5<br /> | |||
</td> | |||
<td>mi-ta<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>10/7<br /> | |||
</td> | |||
<td>ta-mi<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>16/11<br /> | |||
</td> | |||
<td>fu-do<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>3/2<br /> | |||
</td> | |||
<td>do-sol<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>14/9<br /> | |||
</td> | |||
<td>re-ta<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>11/7<br /> | |||
</td> | |||
<td>ta-fu<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>8/5<br /> | |||
</td> | |||
<td>mi-do<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>18/11<br /> | |||
</td> | |||
<td>fu-re<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>5/3<br /> | |||
</td> | |||
<td>sol-mi<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>12/7<br /> | |||
</td> | |||
<td>ta-sol<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>7/4<br /> | |||
</td> | |||
<td>do-ta<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>16/9<br /> | |||
</td> | |||
<td>re-do<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>9/5<br /> | |||
</td> | |||
<td>mi-re<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>20/11<br /> | |||
</td> | |||
<td>fu-mi<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>11/6<br /> | |||
</td> | |||
<td>sol-fu<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>2/1<br /> | |||
</td> | |||
<td>do-do<br /> | |||
</td> | |||
</tr> | |||
</table> | |||
<br /> | <br /> | ||
While the <a class="wiki_link" href="/7-limit">7-limit</a> introduces subminor and supermajor intervals, which can sound like dramatic inflections of the familiar interval categories of <a class="wiki_link" href="/12edo">12edo</a>, the 11-limit introduces neutral intervals, <a class="wiki_link" href="/superfourth">superfourth</a>s and <a class="wiki_link" href="/subfifth">subfifth</a>s, which fall in between major, minor and perfect <a class="wiki_link" href="/interval%20category">interval categories</a> and thus demand new distinctions. It is thus inescapably xenharmonic.<br /> | While the <a class="wiki_link" href="/7-limit">7-limit</a> introduces subminor and supermajor intervals, which can sound like dramatic inflections of the familiar interval categories of <a class="wiki_link" href="/12edo">12edo</a>, the 11-limit introduces neutral intervals, <a class="wiki_link" href="/superfourth">superfourth</a>s and <a class="wiki_link" href="/subfifth">subfifth</a>s, which fall in between major, minor and perfect <a class="wiki_link" href="/interval%20category">interval categories</a> and thus demand new distinctions. It is thus inescapably xenharmonic.<br /> | ||
Line 47: | Line 264: | ||
Relative to their size, <a class="wiki_link" href="/edo">edo</a>s which do (relatively) well in supporting 11-limit intervals are: <a class="wiki_link" href="/12edo">12edo</a>, <a class="wiki_link" href="/15edo">15edo</a>, <a class="wiki_link" href="/22edo">22edo</a>, <a class="wiki_link" href="/31edo">31edo</a>, <a class="wiki_link" href="/41edo">41edo</a>, <a class="wiki_link" href="/46edo">46edo</a>, <a class="wiki_link" href="/58edo">58edo</a>, <a class="wiki_link" href="/72edo">72edo</a>, <a class="wiki_link" href="/118edo">118edo</a>, <a class="wiki_link" href="/130edo">130edo</a> and <a class="wiki_link" href="/152edo">152edo</a>.<br /> | Relative to their size, <a class="wiki_link" href="/edo">edo</a>s which do (relatively) well in supporting 11-limit intervals are: <a class="wiki_link" href="/12edo">12edo</a>, <a class="wiki_link" href="/15edo">15edo</a>, <a class="wiki_link" href="/22edo">22edo</a>, <a class="wiki_link" href="/31edo">31edo</a>, <a class="wiki_link" href="/41edo">41edo</a>, <a class="wiki_link" href="/46edo">46edo</a>, <a class="wiki_link" href="/58edo">58edo</a>, <a class="wiki_link" href="/72edo">72edo</a>, <a class="wiki_link" href="/118edo">118edo</a>, <a class="wiki_link" href="/130edo">130edo</a> and <a class="wiki_link" href="/152edo">152edo</a>.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:269:&lt;img src=&quot;/file/view/11-limit_compare.png/354832066/11-limit_compare.png&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/11-limit_compare.png/354832066/11-limit_compare.png" alt="11-limit_compare.png" title="11-limit_compare.png" /><!-- ws:end:WikiTextLocalImageRule:269 --><br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:1:&lt;h2&gt; --><h2 id="toc0"><a name="x-Intervals"></a><!-- ws:end:WikiTextHeadingRule:1 -->Intervals</h2> | <!-- ws:start:WikiTextHeadingRule:1:&lt;h2&gt; --><h2 id="toc0"><a name="x-Intervals"></a><!-- ws:end:WikiTextHeadingRule:1 -->Intervals</h2> | ||
Line 138: | Line 355: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:3:&lt;h1&gt; --><h1 id="toc1"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:3 -->Music</h1> | <!-- ws:start:WikiTextHeadingRule:3:&lt;h1&gt; --><h1 id="toc1"><a name="Music"></a><!-- ws:end:WikiTextHeadingRule:3 -->Music</h1> | ||
<a class="wiki_link_ext" href="http://sonic-arts.org/hill/10-passages-ji/10-passages-ji.htm" rel="nofollow">Study #3</a | <a class="wiki_link_ext" href="http://sonic-arts.org/hill/10-passages-ji/10-passages-ji.htm" rel="nofollow">Study #3</a> <a class="wiki_link_ext" href="http://sonic-arts.org/hill/10-passages-ji/04_hill_study-3.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Dave%20Hill">Dave Hill</a><br /> | ||
<a class="wiki_link_ext" href="http://sonic-arts.org/hill/10-passages-ji/10-passages-ji.htm" rel="nofollow">Brief 11-ratio composition</a | <a class="wiki_link_ext" href="http://sonic-arts.org/hill/10-passages-ji/10-passages-ji.htm" rel="nofollow">Brief 11-ratio composition</a> <a class="wiki_link_ext" href="http://sonic-arts.org/hill/10-passages-ji/09_hill_brief-11-ratio-composition.mp3" rel="nofollow">play</a> by Dave Hill<br /> | ||
<a class="wiki_link_ext" href="http://micro.soonlabel.com/just/11-limit/20120210-piano-11-limit.mp3" rel="nofollow">11 Limit Piano</a> by <a class="wiki_link" href="/Chris%20Vaisvil">Chris Vaisvil</a><br /> | |||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:5:&lt;h1&gt; --><h1 id="toc2"><a name="See also"></a><!-- ws:end:WikiTextHeadingRule:5 -->See also</h1> | <!-- ws:start:WikiTextHeadingRule:5:&lt;h1&gt; --><h1 id="toc2"><a name="See also"></a><!-- ws:end:WikiTextHeadingRule:5 -->See also</h1> |