Generator ranges of MOS: Difference between revisions

m wikify MOS
No edit summary
Line 1: Line 1:
Below are ranges of generators for various L-s patterns of [[MOS scale]]s, with the number of steps in the scale from 2 to 29. The ranges are given in fractions of the interval of equivalence, which is normally an octave. The tables give the range of possible generators in the second column, normalized so that the lower end of the range is where L/s = 1 (Nedo). The third column gives the midpoint of the range. Finally, the fourth column gives the boundaries of propriety, maximum expressiveness and diatonicity.
Below are ranges of generators for various L-s patterns of [[MOS scale]]s, with the number of steps in the scale from 2 to 29. The ranges are given in fractions of the interval of equivalence, which is normally an octave. The tables give the range of possible generators in the second column, normalized so that the lower end of the range is where L/s = 1 (Nedo). The third column gives the midpoint of the range. Finally, the fourth column gives the boundaries of propriety, maximum expressiveness and diatonicity.


If the number of the [[Interval_class|generic interval]] to which the generator g belongs is C, and there are N scale steps to the interval of equivalence, then the average the size of an interval in class C is C/N. We have normalized so that C/N is the lower bound of the range of generators; since therefore g > C/N, g is larger than average and hence is the larger of the two sizes of intervals in its class, which means we have normalized to the [[Modal_UDP_Notation|chroma-positive]] generator. We have normalized to the formula fir the step size where the leading term is positive.
If the number of the [[Interval_class|generic interval]] to which the generator g belongs is C, and there are N scale steps to the interval of equivalence, then the average the size of an interval in class C is C/N. We have normalized so that C/N is the lower bound of the range of generators; since therefore g > C/N, g is larger than average and hence is the larger of the two sizes of intervals in its class, which means we have normalized to the [[Modal_UDP_Notation|chroma-positive]] generator. We have normalized to the formula for the step size where the leading term is positive.


=2, 3, 4=
=2, 3, 4=
Line 59: Line 59:


=5=
=5=
 
'''Note: italicized generators from here below generate scales which are weakly tonal'''
{| class="wikitable"
{| class="wikitable"
|-
|-
Line 72: Line 72:
| | 4\5 < g < 1
| | 4\5 < g < 1
| | g = 9\10
| | g = 9\10
| | g = 5\6, 6\7, 7\8
| | g = ''5\6'', 6\7, 7\8
| | 4g-3
| | 4g-3
| | 1-g
| | 1-g
Line 112: Line 112:
| | 5\6 < g < 1
| | 5\6 < g < 1
| | g = 11\12
| | g = 11\12
| | g = 6\7, 7\8, 8\9
| | g = ''6\7'', 7\8, 8\9
| | 5g-4
| | 5g-4
| | 1-g
| | 1-g
Line 159: Line 159:
| | 6\7 < g < 1
| | 6\7 < g < 1
| | g = 13\14
| | g = 13\14
| | g = 7\8, 8\9, 9\10
| | g = ''7\8'', 8\9, 9\10
| | 6g-5
| | 6g-5
| | 1-g
| | 1-g
Line 213: Line 213:
| | 7\8 < g < 1
| | 7\8 < g < 1
| | g = 15\16
| | g = 15\16
| | g = 8\9, 9\10, 10\11
| | g = I, 9\10, 10\11
| | 7g-6
| | 7g-6
| | 1-g
| | 1-g
Line 261: Line 261:


=9=
=9=
'''Note: italicized generators from here below generate scales which are weakly tonal'''
{| class="wikitable"
{| class="wikitable"
|-
|-
Line 275: Line 273:
| | 8\9 < g < 1
| | 8\9 < g < 1
| | g = 17\18
| | g = 17\18
| | g = ''9\10'', 10\11, 11\12
| | g = ''9\10'', ''10\11'', 11\12
| | 8g-7
| | 8g-7
| | 1-g
| | 1-g
Line 282: Line 280:
| | 4\9 < g < 1\2
| | 4\9 < g < 1\2
| | g = 17\36
| | g = 17\36
| | g = 5\11, 6\13, 7\15
| | g = ''5\11'', 6\13, 7\15
| | 7g-3
| | 7g-3
| | 1-2g
| | 1-2g
Line 343: Line 341:
| | 9\10 < g < 1
| | 9\10 < g < 1
| | g = 19\20
| | g = 19\20
| | g = ''10\11'', 11\12, 12\13
| | g = ''10\11'', ''11\12'', 12\13
| | 9g-8
| | 9g-8
| | 1-g
| | 1-g
Line 350: Line 348:
| | 4\10 < g < 1\2
| | 4\10 < g < 1\2
| | g = 9\20
| | g = 9\20
| | g = 5\12, 6\14, 7\16
| | g = ''5\12'', 6\14, 7\16
| | 4g-3\2
| | 4g-3\2
| | 1\2-g
| | 1\2-g
Line 418: Line 416:
| | 10\11 < g < 1
| | 10\11 < g < 1
| | g = 21\22
| | g = 21\22
| | g = ''11\12'', 12\13, 13\14
| | g = ''11\12'', ''12\13'', 13\14
| | 10g-9
| | 10g-9
| | 1-g
| | 1-g
Line 425: Line 423:
| | 5\11 < g < 1\2
| | 5\11 < g < 1\2
| | g = 21\44
| | g = 21\44
| | g = 6\13, 7\15, 8\17
| | g = ''6\13'', 7\15, 8\17
| | 9g-4
| | 9g-4
| | 1-2g
| | 1-2g
Line 589: Line 587:
| | 12\13 < g < 1
| | 12\13 < g < 1
| | g = 25\26
| | g = 25\26
| | g = ''13\14,'' ''14\15'', 15\16
| | ''g = 13\14, 14\15, 15\16''
| | 12g-11
| | 12g-11
| | 1-g
| | 1-g
Line 603: Line 601:
| | 4\13 < g < 1\3
| | 4\13 < g < 1\3
| | g = 25\78
| | g = 25\78
| | g = 5\16, 6\19, 7/22
| | g = ''5\16'', 6\19, 7/22
| | 10g-3
| | 10g-3
| | 1-3g
| | 1-3g
Line 685: Line 683:
| | 13\14 < g < 1
| | 13\14 < g < 1
| | g = 27\28
| | g = 27\28
| | g = ''14\15,'' ''15\16'', 16\17
| | ''g = 14\15, 15\16, 16\17''
| | 13g-12
| | 13g-12
| | 1-g
| | 1-g
Line 699: Line 697:
| | 9\14 < g < 2\3
| | 9\14 < g < 2\3
| | g = 55\84
| | g = 55\84
| | g = 11\17, 13\20, 15\23
| | g = ''11\17'', 13\20, 15\23
| | 11g-7
| | 11g-7
| | 2-3g
| | 2-3g
Line 788: Line 786:
| | 14\15 < g < 1
| | 14\15 < g < 1
| | g = 29\30
| | g = 29\30
| | g = ''15\16,'' ''16\17'', 17\18
| | ''g = 15\16, 16\17, 17\18''
| | 14g-13
| | 14g-13
| | 1-g
| | 1-g
Line 802: Line 800:
| | 4\15 < g < 1\3
| | 4\15 < g < 1\3
| | g = 9\30
| | g = 9\30
| | g = 5\18, 6\21, 7\24
| | g = ''5\18'', 6\21, 7\24
| | 4g-1
| | 4g-1
| | 1\3-g
| | 1\3-g
Line 898: Line 896:
| | 15\16 < g < 1
| | 15\16 < g < 1
| | g = 31\32
| | g = 31\32
| | g = ''16\17,'' ''17\18'', 18\19
| | ''g = 16\17, 17\18, 18\19''
| | 15g-14
| | 15g-14
| | 1-g
| | 1-g
Line 912: Line 910:
| | 5\16 < g < 1\3
| | 5\16 < g < 1\3
| | g = 31\96
| | g = 31\96
| | g = 6\19, 7\22, 8\25
| | g = ''6\19'', 7\22, 8\25
| | 13g-4
| | 13g-4
| | 1-3g
| | 1-3g
Line 1,015: Line 1,013:
| | 16\17 < g < 1
| | 16\17 < g < 1
| | g = 33\34
| | g = 33\34
| | g = ''17\18,'' ''18\19'', 19\20
| | ''g = 17\18, 18\19, 19\20''
| | 16g-15
| | 16g-15
| | 1-g
| | 1-g
Line 1,022: Line 1,020:
| | 8\17 < g < 1\2
| | 8\17 < g < 1\2
| | g = 33\68
| | g = 33\68
| | g = ''9\19'', 10\21, 11\23
| | g = ''9\19'', ''10\21'', 11\23
| | 15g-7
| | 15g-7
| | 1-2g
| | 1-2g
Line 1,029: Line 1,027:
| | 11\17 < g < 2\3
| | 11\17 < g < 2\3
| | g = 67\102
| | g = 67\102
| | g = 13\20, 15\23, 17\26
| | g = ''13\20'', 15\23, 17\26
| | 14g-9
| | 14g-9
| | 2-3g
| | 2-3g
Line 1,036: Line 1,034:
| | 4\17 < g < 1\4
| | 4\17 < g < 1\4
| | g = 33\136
| | g = 33\136
| | g = 5\21, 6\25, 7\29
| | g = ''5\21'', 6\25, 7\29
| | 13g-3
| | 13g-3
| | 1-4g
| | 1-4g
Line 1,139: Line 1,137:
| | 17\18 < g < 1
| | 17\18 < g < 1
| | g = 35\36
| | g = 35\36
| | g = ''18\19, 19\20, 20\21''
| | ''g = 18\19, 19\20, 20\21''
| | 17g-16
| | 17g-16
| | 1-g
| | 1-g
Line 1,146: Line 1,144:
| | 8\18 < g < 1\2
| | 8\18 < g < 1\2
| | g = 17\36
| | g = 17\36
| | g -= ''9\20'', 10\22, 11\24
| | g = ''9\20'', ''10\22'', 11\24
| | 8g-7\2
| | 8g-7\2
| | 1\2-g
| | 1\2-g
Line 1,160: Line 1,158:
| | <span style="line-height: 15.6000003814697px;">4\18 &lt; g &lt; 1\4</span>
| | <span style="line-height: 15.6000003814697px;">4\18 &lt; g &lt; 1\4</span>
| | g = 17\72
| | g = 17\72
| | <span style="line-height: 15.6000003814697px;">g = 5\22, 6\26,</span> 7\30
| | <span style="line-height: 15.6000003814697px;">g = ''5\22'', 6\26,</span> 7\30
| | 7g-3\2
| | 7g-3\2
| | 1\2-2g
| | 1\2-2g
Line 1,264: Line 1,262:
! | <span style="background-color: #ffffff;">Midpoint</span>
! | <span style="background-color: #ffffff;">Midpoint</span>
! | Boundaries of propriety, maximum expressiveness, diatonicity
! | Boundaries of propriety, maximum expressiveness, diatonicity
! | Large step
! |Large step+Small step
! | Small step
|-
|-
| | 1L18s
| | 1L18s
| | 18\19 &lt; g &lt; 1
| | 18\19 &lt; g &lt; 1
| | g = 37\38
| | g = 37\38
| | g = ''19\20, 20\21, 21\22''
| | ''g = 19\20, 20\21, 21\22''
| | 18g-17
| |18g-17+1-g = 17g-16
| | 1-g
|-
|-
| | 2L17s
| | 2L17s
| | 9\19 &lt; g &lt; 1\2
| | 9\19 &lt; g &lt; 1\2
| | g = 37\76
| | g = 37\76
| | g = ''10\21'', 11\23, 12\25
| | g = ''10\21'', ''11\23'', 12\25
| | 17g-8
| |17g-8+1-2g = 15g-7
| | 1-2g
|-
|-
| | 3L16s
| | 3L16s
Line 1,285: Line 1,280:
| | g = 37\114
| | g = 37\114
| | g = ''7\22'', 8\25, 10\31
| | g = ''7\22'', 8\25, 10\31
| | 16g-5
| |16g-5+1-3g = 13g-4
| | 1-3g
|-
|-
| | 4L15s
| | 4L15s
| | 14\19 &lt; g &lt; 3\4
| | 14\19 &lt; g &lt; 3\4
| | g = 113\152
| | g = 113\152
| | g = 17\23, 20\27, 23\31
| | g = ''17\23'', 20\27, 23\31
| | 15g-11
| |15g-11+3-4g = 11g-8
| | 3-4g
|-
|-
| | 5L14s
| | 5L14s
Line 1,299: Line 1,292:
| | g = 151\190
| | g = 151\190
| | g = 19\24, 23\29, 27\34
| | g = 19\24, 23\29, 27\34
| | 14g-11
| |14g-11+4-5g = 9g-7
| | 4-5g
|-
|-
| | 6L13s
| | 6L13s
Line 1,306: Line 1,298:
| | g = 37\228
| | g = 37\228
| | g = 4\25, 5\31, 6/37
| | g = 4\25, 5\31, 6/37
| | 13g-2
| |13g-2+1-6g = 7g-1
| | 1-6g
|-
|-
| | 7L12s
| | 7L12s
Line 1,313: Line 1,304:
| | g = 113\266
| | g = 113\266
| | g = 11\26, 14\33, 17\40
| | g = 11\26, 14\33, 17\40
| | 12g-5
| |12g-5+3-7g = 5g-2
| | 3-7g
|-
|-
| | 8L11s
| | 8L11s
Line 1,320: Line 1,310:
| | g = 113\304
| | g = 113\304
| | g = 10\27, 13\35, 16\43
| | g = 10\27, 13\35, 16\43
| | 11g-4
| |11g-4+3-8g = 3g-1
| | 3-8g
|-
|-
| | 9L10s
| | 9L10s
Line 1,327: Line 1,316:
| | g = 37\342
| | g = 37\342
| | g = 3\28, 4\37, 5\46
| | g = 3\28, 4\37, 5\46
| | 10g-1
| |10g-1+1-9g = g
| | 1-9g
|-
|-
| | 10L9s
| | 10L9s
Line 1,334: Line 1,322:
| | g = 341\380
| | g = 341\380
| | g = 26\29, 35\39, 44\49
| | g = 26\29, 35\39, 44\49
| | 9g-8
| |9g-8+9-10g = 1-g
| | 9-10g
|-
|-
| | 11L8s
| | 11L8s
Line 1,341: Line 1,328:
| | g = 265\418
| | g = 265\418
| | g = 19\30, 26\41, 33\52
| | g = 19\30, 26\41, 33\52
| | 8g-5
| |8g-5+7-11g = 2-3g
| | 7-11g
|-
|-
| | 12L7s
| | 12L7s
Line 1,348: Line 1,334:
| | g = 265\456
| | g = 265\456
| | g = 18\31, 25\43, 32\55
| | g = 18\31, 25\43, 32\55
| | 7g-4
| |7g-4+7-12g = 3-5g
| | 7-12g
|-
|-
| | 13L6s
| | 13L6s
Line 1,355: Line 1,340:
| | g = 417\494
| | g = 417\494
| | g = 27\32, 38\45, 49\58
| | g = 27\32, 38\45, 49\58
| | 6g-5
| |6g-5+11-13g = 6-7g
| | 11-13g
|-
|-
| | 14L5s
| | 14L5s
Line 1,362: Line 1,346:
| | g = 113\532
| | g = 113\532
| | g = 7\33, 10\47, 13\61
| | g = 7\33, 10\47, 13\61
| | 5g-1
| |5g-1+3-14g = 2-9g
| | 3-14g
|-
|-
| | 15L4s
| | 15L4s
Line 1,369: Line 1,352:
| | g = 151\570
| | g = 151\570
| | g = 9\34, 13\49, 17\64
| | g = 9\34, 13\49, 17\64
| | 4g-1
| |4g-1+4-15g = 3-11g
| | 4-15g
|-
|-
| | 16L3s
| | 16L3s
Line 1,376: Line 1,358:
| | g = 417\608
| | g = 417\608
| | g = 24\35, 35\51, 46\67
| | g = 24\35, 35\51, 46\67
| | 3g-2
| |3g-2+11-16g = 9-13g
| | 11-16g
|-
|-
| | 17L2s
| | 17L2s
Line 1,383: Line 1,364:
| | g = 341\646
| | g = 341\646
| | g = 19\36, 28\53, 37\70
| | g = 19\36, 28\53, 37\70
| | 2g-1
| |2g-1+9-17g = 8-15g
| | 9-17g
|-
|-
| | 18L1s
| | 18L1s
Line 1,390: Line 1,370:
| | g = 37\684
| | g = 37\684
| | g = 2\37, 3\55, 4\73
| | g = 2\37, 3\55, 4\73
| | g
| |g+1-18g = 1-17g
| | 1-18g
|}
|}


Line 1,408: Line 1,387:
| | 19\20 &lt; g &lt; 1
| | 19\20 &lt; g &lt; 1
| | g = 39\40
| | g = 39\40
| | g = ''20\21, 21\22, 22\23''
| | ''g = 20\21, 21\22, 22\23''
| | 19g-18
| | 19g-18
| | 1-g
| | 1-g
Line 1,415: Line 1,394:
| | 9\20 &lt; g &lt; 1\2
| | 9\20 &lt; g &lt; 1\2
| | g = 19\40
| | g = 19\40
| | g = ''10\22'', 11\24, 12\26
| | g = ''10\22'', ''11\24'', 12\26
| | 9g-4
| | 9g-4
| | 1\2-g
| | 1\2-g
Line 1,429: Line 1,408:
| | 4\20 &lt; g &lt; 1\4
| | 4\20 &lt; g &lt; 1\4
| | g = 9\40
| | g = 9\40
| | g = 5\24, 6\28, 7\32
| | g = ''5\24'', 6\28, 7\32
| | 4g-3\4
| | 4g-3\4
| | 1\4-g
| | 1\4-g
Line 1,553: Line 1,532:
| | 20\21 &lt; g &lt; 1
| | 20\21 &lt; g &lt; 1
| | g = 41\42
| | g = 41\42
| | g = ''21\22, 22\23, 23\24''
| | ''g = 21\22, 22\23, 23\24''
| | 20g-19
| | 20g-19
| | 1-g
| | 1-g
Line 1,581: Line 1,560:
| | 4\21 &lt; g &lt; 1\5
| | 4\21 &lt; g &lt; 1\5
| | g = 41\210
| | g = 41\210
| | g = 5\26, 6\31, 7\36
| | g = ''5\26'', 6\31, 7\36
| | 16g-3
| | 16g-3
| | 1-5g
| | 1-5g
Line 1,699: Line 1,678:
! | <span style="background-color: #ffffff; color: #000000;">Midpoint</span>
! | <span style="background-color: #ffffff; color: #000000;">Midpoint</span>
! | Boundaries of propriety, maximum expressiveness, diatonicity
! | Boundaries of propriety, maximum expressiveness, diatonicity
! | Large step
! |Large step+Small step
! | Small step
|-
|-
| | 1L21s
| | 1L21s
| | 21\22 &lt; g &lt; 1
| | 21\22 &lt; g &lt; 1
| | g = 43\44
| | g = 43\44
| | g = ''22\23,'' ''23\24,'' ''24/25''
| | ''g = 22\23, 23\24, 24/25''
| | 21g-20
| |21g-20+1-g = 20g-19
| | 1-g
|-
|-
| | 2L20s
| | 2L20s
Line 1,713: Line 1,690:
| | g = 21\44
| | g = 21\44
| | g = ''11\24,'' ''12\26'', 13\28
| | g = ''11\24,'' ''12\26'', 13\28
| | 10g-9\2
| |10g-9\2+1\2-g = 9g-4
| | 1\2-g
|-
|-
| | 3L19s
| | 3L19s
Line 1,720: Line 1,696:
| | g = 43\132
| | g = 43\132
| | g = ''8\25'', 9\28, 10\31
| | g = ''8\25'', 9\28, 10\31
| | 19g-6
| |19g-6+1-3g = 16g-5
| | 1-3g
|-
|-
| | 4L18s
| | 4L18s
Line 1,727: Line 1,702:
| | g = 21\88
| | g = 21\88
| | g = ''6\26'', 7\30, 8\34
| | g = ''6\26'', 7\30, 8\34
| | 9g-2
| |9g-2+1\2-2g = 7g-3\2
| | 1\2-2g
|-
|-
| | 5L17s
| | 5L17s
| | 13\22 &lt; g &lt; 3\5
| | 13\22 &lt; g &lt; 3\5
| | g = 131\220
| | g = 131\220
| | g = 16\27, 19\32, 22\37
| | g = ''16\27'', 19\32, 22\37
| | 17g-10
| |17g-10+3-5g = 12g-7
| | 3-5g
|-
|-
| | 6L16s
| | 6L16s
Line 1,741: Line 1,714:
| | g = 43\132
| | g = 43\132
| | g = 9\28, 11\34, 13\40
| | g = 9\28, 11\34, 13\40
| | 8g-5\2
| |8g-5\2+1-3g = 5g-2
| | 1-3g
|-
|-
| | 7L15s
| | 7L15s
Line 1,748: Line 1,720:
| | g = 43\308
| | g = 43\308
| | g = 4\29, 5\36, 6\43
| | g = 4\29, 5\36, 6\43
| | 15g-2
| |15g-2+1-7g = 8g-1
| | 1-7g
|-
|-
| | 8L14s
| | 8L14s
Line 1,755: Line 1,726:
| | g = 65\176
| | g = 65\176
| | g = 11\30, 14\38, 17\46
| | g = 11\30, 14\38, 17\46
| | 7g-5\2
| |7g-5\2+3\2-4g = 3g-2
| | 3\2-4g
|-
|-
| | 9L13s
| | 9L13s
Line 1,762: Line 1,732:
| | g = 307\396
| | g = 307\396
| | g = 24\31, 31\40, 38\49
| | g = 24\31, 31\40, 38\49
| | 13g-10
| |13g-10+7-9g = 4g-3
| | 7-9g
|-
|-
| | 10L12s
| | 10L12s
Line 1,769: Line 1,738:
| | g = 21\220
| | g = 21\220
| | g = 3\32, 4\42, 5\52
| | g = 3\32, 4\42, 5\52
| | 6g-1\2
| |6g-1\2+1\2-5g = g
| | 1\2-5g
|-
|-
| | 11L11s
| | 11L11s
Line 1,776: Line 1,744:
| | g = 3\44
| | g = 3\44
| | g = 2\33, 3\44, 4\55
| | g = 2\33, 3\44, 4\55
| | g
| |g + 1\11-g = 1\11
| | 1\11-g
|-
|-
| | 12L10s
| | 12L10s
Line 1,783: Line 1,750:
| | g = 109\264
| | g = 109\264
| | g = 14\34, 19\46, 24\58
| | g = 14\34, 19\46, 24\58
| | 5g-2
| |5g-2+5\2-6g = 1\2-g
| | 5\2-6g
|-
|-
| | 13L9s
| | 13L9s
Line 1,790: Line 1,756:
| | g = 131\572
| | g = 131\572
| | g = 8\35, 11\48, 14\61
| | g = 8\35, 11\48, 14\61
| | 9g-2
| |9g-2+3-13g = 1-4g
| | 3-13g
|-
|-
| | 14L8s
| | 14L8s
Line 1,797: Line 1,762:
| | g = 43\308
| | g = 43\308
| | g = 5\36, 7\50, 9\64
| | g = 5\36, 7\50, 9\64
| | 4g-1\2
| |4g-1\2+1-7g = 1\2-3g
| | 1-7g
|-
|-
| | 15L7s
| | 15L7s
Line 1,804: Line 1,768:
| | g = 571\660
| | g = 571\660
| | g = 32\37, 45\52, 58\67
| | g = 32\37, 45\52, 58\67
| | 7g-6
| |7g-6+13-15g = 7-8g
| | 13-15g
|-
|-
| | 16L6s
| | 16L6s
Line 1,811: Line 1,774:
| | g = 65\352
| | g = 65\352
| | g = 7\38, 10\54, 13\70
| | g = 7\38, 10\54, 13\70
| | 3g-1\2
| |3g-1\2+3\2-8g = 1-5g
| | 3\2-8g
|-
|-
| | 17L5s
| | 17L5s
Line 1,818: Line 1,780:
| | g = 207\748
| | g = 207\748
| | g = 16\39, 23\56, 30\73
| | g = 16\39, 23\56, 30\73
| | 5g-2
| |5g-2+7-17g = 5-12g
| | 7-17g
|-
|-
| | 18L4s
| | 18L4s
Line 1,825: Line 1,786:
| | g = 109\396
| | g = 109\396
| | g = 11\40, 16\58, 21\76
| | g = 11\40, 16\58, 21\76
| | 2g-1\2
| |2g-1\2+5\2-9g = 2-7g
| | 5\2-9g
|-
|-
| | 19L3s
| | 19L3s
Line 1,832: Line 1,792:
| | g = 571\836
| | g = 571\836
| | g = 28\41, 41\60, 54\79
| | g = 28\41, 41\60, 54\79
| | 3g-2
| |3g-2+13-19g = 11-16g
| | 13-19g
|-
|-
| | 20L2s
| | 20L2s
Line 1,839: Line 1,798:
| | g = 21\440
| | g = 21\440
| | g = 2\42, 3\62, 4\72
| | g = 2\42, 3\62, 4\72
| | g
| |g+1\2-10g = 1\2-9g
| | 1\2-10g
|-
|-
| | 21L1s
| | 21L1s
Line 1,846: Line 1,804:
| | g = 43\924
| | g = 43\924
| | g = 2\43, 3\64, 4\85
| | g = 2\43, 3\64, 4\85
| | g
| |g+1-21g = 1-20g
| | 1-21g
|}
|}


Line 1,864: Line 1,821:
| | <span style="line-height: 15.6000003814697px;">22\23 &lt; g &lt; 1</span>
| | <span style="line-height: 15.6000003814697px;">22\23 &lt; g &lt; 1</span>
| | g = 45\46
| | g = 45\46
| | g = ''23\24, 24\25, 25\26''
| | ''g = 23\24, 24\25, 25\26''
| | 22g-21
| | 22g-21
| | 1-g
| | 1-g
Line 1,892: Line 1,849:
| | 9\23 &lt; g &lt; 2\5
| | 9\23 &lt; g &lt; 2\5
| | g = 91\230
| | g = 91\230
| | g = 11\28, 13\33, 15\38
| | g = ''11\28'', 13\33, 15\38
| | 18g-7
| | 18g-7
| | 2-5g
| | 2-5g
Line 2,030: Line 1,987:
| | 23\24 &lt; g &lt; 1
| | 23\24 &lt; g &lt; 1
| | g = 47\48
| | g = 47\48
| | g = ''24\25, 25\26, 26\27''
| | ''g = 24\25, 25\26, 26\27''
| | 23g-22
| | 23g-22
| | 1-g
| | 1-g
Line 2,203: Line 2,160:
| | 24\25 &lt; g &lt; 1
| | 24\25 &lt; g &lt; 1
| | g = 49\50
| | g = 49\50
| | g = ''25\26, 26\27, 27\28''
| | ''g = 25\26, 26\27, 27\28''
| | 24g-23
| | 24g-23
| | 1-g
| | 1-g
Line 2,210: Line 2,167:
| | 12\25 &lt; g &lt; 1\2
| | 12\25 &lt; g &lt; 1\2
| | g = 49\100
| | g = 49\100
| | g = ''13\27, 14\29'', 15\31
| | ''g = 13\27, 14\29, 15\31''
| | 23g-11
| | 23g-11
| | 1-2g
| | 1-2g
Line 2,217: Line 2,174:
| | 8\25 &lt; g &lt; 1\3
| | 8\25 &lt; g &lt; 1\3
| | g = 49\150
| | g = 49\150
| | g = ''9\28'', 10\31, 11\34
| | g = ''9\28'', ''10\31'', 11\34
| | 22g-7
| | 22g-7
| | 1-3g
| | 1-3g
Line 2,238: Line 2,195:
| | 4\25 &lt; g &lt; 1\6
| | 4\25 &lt; g &lt; 1\6
| | g = 49\300
| | g = 49\300
| | g = 5\31, 6\37, 7\43
| | g = ''5\31'', 6\37, 7\43
| | 19g-3
| | 19g-3
| | 1-6g
| | 1-6g
Line 2,383: Line 2,340:
| | 25\26 &lt; g &lt; 1
| | 25\26 &lt; g &lt; 1
| | g = 51\52
| | g = 51\52
| | g = ''26\27, 27\28, 28\29''
| | ''g = 26\27, 27\28, 28\29''
| | 25g-24
| | 25g-24
| | 1-g
| | 1-g
Line 2,390: Line 2,347:
| | 12\26 &lt; g &lt; 1\2
| | 12\26 &lt; g &lt; 1\2
| | g = 25\52
| | g = 25\52
| | g = ''13\28, 14\30'', 15\32
| | ''g = 13\28, 14\30, 15\32''
| | 12g-11\2
| | 12g-11\2
| | 1\2-g
| | 1\2-g
Line 2,397: Line 2,354:
| | 17\26 &lt; g &lt; 2\3
| | 17\26 &lt; g &lt; 2\3
| | g = 103\156
| | g = 103\156
| | g = ''19\29'', 21\32, 23\35
| | g = ''19\29'', ''21\32'', 23\35
| | 23g-15
| | 23g-15
| | 2-3g
| | 2-3g
Line 2,418: Line 2,375:
| | 4\26 &lt; g &lt; 1\6
| | 4\26 &lt; g &lt; 1\6
| | g = 25\156
| | g = 25\156
| | g = 5\32, 6\38, 7\44
| | g = ''5\32'', 6\38, 7\44
| | 10g-3\2
| | 10g-3\2
| | 1\2-3g
| | 1\2-3g
Line 2,570: Line 2,527:
| | 26\27 &lt; g &lt; 1
| | 26\27 &lt; g &lt; 1
| | g = 53\54
| | g = 53\54
| | <span style="line-height: 15.6000003814697px;">g = ''27\28,''</span> ''28\29, 29\30''
| | <span style="line-height: 15.6000003814697px;">''g = 27\28,''</span> ''28\29, 29\30''
| | 26g-25
| | 26g-25
| | 1-g
| | 1-g
Line 2,577: Line 2,534:
| | 13\27 &lt; g &lt; 1\2
| | 13\27 &lt; g &lt; 1\2
| | g = 53\108
| | g = 53\108
| | g = ''14\29, 15\31'', 16\33
| | ''g = 14\29, 15\31, 16\33''
| | 25g-12
| | 25g-12
| | 1-2g
| | 1-2g
Line 2,584: Line 2,541:
| | 8\27 &lt; g &lt; 1\3
| | 8\27 &lt; g &lt; 1\3
| | g = 17\54
| | g = 17\54
| | g = ''9\30'', 10\33, 11\36
| | g = ''9\30'', ''10\33'', 11\36
| | 8g-7\3
| | 8g-7\3
| | 1-3g
| | 1-3g
Line 2,605: Line 2,562:
| | 4\27 &lt; g &lt; 1\6
| | 4\27 &lt; g &lt; 1\6
| | g = 17\108
| | g = 17\108
| | g = 5\33, 6\39, 7\45
| | g = ''5\33'', 6\39, 7\45
| | 7g-1
| | 7g-1
| | 1\3-2g
| | 1\3-2g
Line 2,764: Line 2,721:
| | 27\28 &lt; g &lt; 1
| | 27\28 &lt; g &lt; 1
| | g = 55\56
| | g = 55\56
| | g = ''28\29,'' ''29\30, 30\31''
| | ''g = 28\29, 29\30, 30\31''
| | 27g-26
| | 27g-26
| | 1-g
| | 1-g
Line 2,771: Line 2,728:
| | 13\28 &lt; g &lt; 1\2
| | 13\28 &lt; g &lt; 1\2
| | g = 27\56
| | g = 27\56
| | g = ''14\30, 15\32'', 16\34
| | ''g = 14\30, 15\32, 16\34''
| | 13g-6
| | 13g-6
| | 1\2-g
| | 1\2-g
Line 2,778: Line 2,735:
| | 9\28 &lt; g &lt; 1\3
| | 9\28 &lt; g &lt; 1\3
| | g = 55\168
| | g = 55\168
| | g = ''10\31'',<span style="line-height: 15.6000003814697px;"> 11\34,</span> 12\37
| | g = ''10\31'',<span style="line-height: 15.6000003814697px;"> ''11\34'',</span> 12\37
| | 25g-8
| | 25g-8
| | 1-3g
| | 1-3g
Line 2,799: Line 2,756:
| | 9\28 &lt; g &lt; 2\6
| | 9\28 &lt; g &lt; 2\6
| | g = 55\168
| | g = 55\168
| | g = 11\34, 13\40, 15\46
| | g = ''11\34'', 13\40, 15\46
| | 11g-7\2
| | 11g-7\2
| | 1-3g
| | 1-3g
Line 2,965: Line 2,922:
| | 28\29 &lt; g &lt; 1
| | 28\29 &lt; g &lt; 1
| | g = 57\58
| | g = 57\58
| | g = ''29\30, 30\31, 31\32''
| | ''g = 29\30, 30\31, 31\32''
| | 28g-27
| | 28g-27
| | 1-g
| | 1-g
Line 2,972: Line 2,929:
| | 14\29 &lt; g &lt; 1\2
| | 14\29 &lt; g &lt; 1\2
| | g = 57\116
| | g = 57\116
| | g = ''15\31'', ''16\33'', 17\35
| | ''g = 15\31, 16\33, 17\35''
| | 27g-13
| | 27g-13
| | 1-2g
| | 1-2g
Line 2,979: Line 2,936:
| | 19\29 &lt; g &lt; 2\3
| | 19\29 &lt; g &lt; 2\3
| | g = 115\174
| | g = 115\174
| | g = ''21\32'', 23\35, 25\38
| | g = ''21\32'', ''23\35'', 25\38
| | 26g-17
| | 26g-17
| | 2-3g
| | 2-3g
Line 3,000: Line 2,957:
| | 24\29 &lt; g &lt; 5\6
| | 24\29 &lt; g &lt; 5\6
| | g = 289\348
| | g = 289\348
| | g = 29\35, 34\41, 39\47
| | g = ''29\35'', 34\41, 39\47
| | 23g-19
| | 23g-19
| | 5-6g
| | 5-6g
Line 3,007: Line 2,964:
| | 4\29 &lt; g &lt; 1\7
| | 4\29 &lt; g &lt; 1\7
| | g = 57\406
| | g = 57\406
| | g = 5\36, 6\43, 7\50
| | g = ''5\36'', 6\43, 7\50
| | 22g-3
| | 22g-3
| | 1-7g
| | 1-7g