Catalog of rank two temperaments: Difference between revisions

TallKite (talk | contribs)
No edit summary
TallKite (talk | contribs)
No edit summary
Line 5,649: Line 5,649:




{| class="wikitable sortable"
|-
! | Color Name
! | Commas
!Pergen
!Generator
! | Mapping
! | Comp
! | Error
! | Badness
|-
|1-edo & Yobi & Rubi + ela
or ela nowa
| | 4/3, 5/4, 8/7 (7/6)
|(P8, P4)
|11/8
| | 1 2 2 3 0<br>0 0 0 0 1
| | .193
| | 327.406
| | 17.646
|-
|1-edo & Yobi & Loquad + za
or za nowa
| | 4/3, 5/4, 11/8 (11/10)
|(P8, M2)
|8/7
| | 1 2 2 0 3<br>0 0 0 1 0
| | .228
| | 385.465
| | 27.274
|-
|1-edo & Yobi & Luzotri
or Luzotri nowa
| | 4/3, 5/4, 14/11
|(P8, P4)
|7/4 = 11/8
| | 1 2 2 0 1<br>0 0 0 1 1
| | .267
| | 336.13
| | 30.988
|-
|1-edo & Rubi & Logu
or Logu nowa
| | 4/3, 8/7 (7/6), 11/10
|(P8, P4)
|5/4 = 11/8
| | 1 2 0 3 1<br>0 0 1 0 1
| | .319
| | 218.143
| | 27.130
|-
|1-edo & Zoguquad & Logu
| | 4/3, 7/5, 11/10 (14/11)
|(P8, P4)
|5/4 = 7/4 = 11/8
| | 1 2 0 0 1<br>0 0 1 1 1
| | .324
| | 253.143
| | 32.311
|-
|Gubi & Zobi & Lu
| | 6/5, 7/6, 12/11 (11/10)
|(P8, P5)
|3/2 = 5/4 = 7/4
| | 1 0 1 1 2<br>0 1 1 1 1
| | .328
| | 164.655
| | 21.432
|-
|Yobi & Zobi & Lu
| | 5/4, 7/6, 12/11
|(P8, P5)
|3/2 = 7/4 = 11/8
| | 1 0 2 1 2<br>0 1 0 1 1
| | .354
| | 167.706
| | 24.774
|-
|Yobi & Zobi & Loquad
| | 5/4, 7/6, 11/8 (11/10)
|(P8, P5)
|3/2 = 7/4
| | 1 0 2 1 3<br>0 1 0 1 0
| | .369
| | 153.296
| | 24.223
|-
|2-edo & Gutri & Rubi + ela
or 2-edo & Gutri + ela
| | 9/8, 6/5, 8/7
|(P8/2, ^1)
|11/8
| | 2 3 5 6 0<br>0 0 0 0 1
| | .375
| | 124.872
| | 20.250
|-
|Yobi & Rubi & Lu
| | 5/4, 8/7, 12/11
|(P8, P5)
|3/2 = 11/8
| | 1 0 2 3 2<br>0 1 0 0 1
| | .390
| | 188.818
| | 32.775
|-
|Gutri & Rubi & Lu
| | 6/5, 8/7, 12/11 (11/10)
|(P8, P5)
|3/2 = 5/4 = 11/8
| | 1 0 1 3 2<br>0 1 1 0 1
| | .406
| | 110.926
| | 20.608
|-
|Gutri & Rutri & Lu
| | 6/5, 9/7, 12/11 (11/10)
|(P8, P5)
|3/2 = 5/4 = 11/8
| | 1 0 1 0 2<br>0 1 1 2 1
| | .408
| | 125.430
| | 23.415
|-
|Yo & Zobi & Logu
| | 10/9, 7/6, 11/10
|(P8, P5)
|3/2 = 7/4
| | 1 0 -1 1 0<br>0 1 2 1 2
| | .452
| | 94.454
| | 20.943
|-
|2-edo & Gutri & Lu + za
| | 9/8, 6/5, 12/11 (11/10)
|(P8/2, ^1)
|8/7
| | 2 3 5 0 7<br>0 0 0 1 0
| | .455
| | 110.141
| | 24.702
|-
|Yo & Zobi & Lu
| | 10/9, 7/6, 12/11
|(P8, P5)
|3/2 = 7/4 = 11/8
| | 1 0 -1 1 2<br>0 1 2 1 1
| | .471
| | 104.885
| | 24.915
|-
|Gutri & Rutri & Loru
| | 6/5, 9/7 (15/14), 22/21
|(P8, P5)
|3/2 = 5/4
| | 1 0 1 0 -1<br>0 1 1 2 3
| | .483
| | 125.665
| | 31.158
|-
|2-edo & Gutri & Loru
| | 9/8, 6/5 (16/15), 22/21
|(P8/2, ^1)
|8/7
| | 2 3 5 0 1<br>0 0 0 1 1
| | .508
| | 117.970
| | 31.811
|-
|2-edo & Rubi & Lu + ya
| | 9/8, 8/7, 12/11
|(P8/2, ^1)
|5/4
| | 2 3 0 6 7<br>0 0 1 0 0
| | .549
| | 103.420
| | 31.715
|-
|3-edo & Yo & Zobi + ela
| | 32/27, 10/9 (16/15), 7/6
|(P8/3, ^1)
|11/8
| | 3 5 7 8 0<br>0 0 0 0 1
| | .550
| | 86.198
| | 26.496
|-
|2-edo & Ruyo & Logu
| | 9/8, 15/14, 11/10
|(P8/2, ^1)
|5/4 = 11/8
| | 2 3 0 1 2<br>0 0 1 1 1
| | .557
| | 60.511
| | 18.993
|-
|Yo & Rubi & Lu
| | 10/9, 8/7, 12/11
|(P8, P5)
|3/2 = 11/8
| | 1 0 -1 3 2<br>0 1 2 0 1
| | .567
| | 71.691
| | 23.207
|-
|Yo & Rubi & Logu
| | 10/9, 8/7, 11/10
|(P8, P5)
|3/2
| | 1 0 -1 3 0<br>0 1 2 0 2
| | .574
| | 93.134
| | 30.760
|-
|Gubi & Rubi & Lu
| | 16/15, 8/7 (15/14), 12/11
|(P8, P5)
|3/2 = 11/8
| | 1 0 4 3 2<br>0 1 -1 0 1
| | .575
| | 60.585
| | 20.049
|-
|Gubi & Rubi & Logu
| | 16/15, 8/7 (15/14), 11/10
|(P8, P5)
|3/2
| | 1 0 4 3 5<br>0 1 -1 0 -1
| | .588
| | 78.370
| | 26.952
|-
|2-edo & Ruyo & Lu
| | 9/8, 15/14, 12/11
|(P8/2, ^1)
|5/4
| | 2 3 0 1 7<br>0 0 1 1 0
| | .606
| | 60.327
| | 21.810
|-
|Yo & Ruyo & Lu
| | 10/9, 15/14, 12/11
|(P8, P5)
|3/2 = 11/8
| | 1 0 -1 -2 2<br>0 1 2 3 1
| | .622
| | 69.361
| | 26.170
|-
|Yo & Rubi & Lo
| | 10/9, 7/6 (21/20), 33/32
|(P8, P5)
|3/2 = 7/4
| | 1 0 -1 1 5<br>0 1 2 1 -1
| | .645
| | 82.949
| | 33.250
|}
(The original version of this page is here: [[Catalog of eleven-limit rank two temperaments]].)
Below is a '''complete''' listing of all 193 11-limit rank-two temperaments with TE complexity less than 16 and TE badness less than 1/30, obtained by the method discussed [[The_wedgie|here]]. The TE error is multiplied by 1200 so that it can be thought of as cents, and the badness is multiplied by 1000. Some "Junk" temperaments of very Low complexity are listed below the main list, which is ordered by increasing complexity.
=Temperament list=
THIS LIST IS SORTABLE, so you can sort by name or by pergen, and look up a specific temperament. Rules for choosing comma sets: prime limit strictly ascends, no torsion allowed, primes excluded because of downward inheritances are not allowed in other commas, and [[Odd limit|double-odd-limit]] is minimized. See: [[Color notation/Temperament Names|Color Notation/Temperament names]].
* Color name column: alternatives or objections are '''bolded'''
* Pergen column: all double-splits are false doubles unless otherwise noted.
* Commas column: ratios are grouped by prime limit with actual commas (","), and sorted within prime-limit by [[Odd limit|double odd limit]].
* Co = Complexity = corresponds roughly to the odd limit of the commas
* Err = Error = corresponds roughly to the cents discrepancy from JI
* Bad = Badness = a combination of complexity and error
{| class="wikitable sortable"
|-
! | Name
! | [[Color notation/Temperament Names|Color Name]]
! | Commas
! | Pergen
! | Mapping
! | Co
! | Err
! | Bad
|-
| |
|Yo & Ruyo & Loru
| | 10/9, 15/14, 22/21
|(P8, P5)
| | 1 0 -1 -2 -3<br>0 1 2 3 4
| | .655
| | 54.775
| | 22.549
|-
| |
|3-edo & Yo & Logu + za
| | 32/27, 10/9 (16/15), 11/10
|(P8/3, ^1)
| | 3 5 7 0 10<br>0 0 0 1 0
| | .680
| | 74.627
| | 32.666
|-
| |
|Gubi & Rubi & Luyoyobi
| | 16/15, 8/7 (15/14), 25/22
|(P8, P5)
| | 1 0 4 3 7<br>0 1 -1 0 -2
| | .692
| | 73.354
| | 33.117
|-
| |
|2-edo & Yoyo & Ruyo + ela
'''(4-edo & Ruyo + ela?)'''
| | 9/8, 25/24, 15/14
|(P8/4, ^1)
| | 4 6 9 11 0<br>0 0 0 0 1
| | .712
| | 47.618
| | 22.540
|-
| |
|2-edo & Ruyo & Luyoyobi
| | 9/8, 15/14 (21/20), 25/22
|(P8/2, ^1)
| | 2 3 0 1 -2<br>0 0 1 1 2
| | .718
| | 57.400
| | 27.551
|-
| |
|Yoyo & Ruyo & Lu
| | 25/24, 15/14, 12/11
|(P8, P5/2)
| | 1 1 2 2 3<br>0 2 1 3 2
| | .718
| | 46.851
| | 22.488
|-
| |
|Gubi & Zogu & Logu
| | 16/15, 21/20, 11/10
|(P8, P5)
| | 1 0 4 6 5<br>0 1 -1 -2 -1
| | .727
| | 44.826
| | 21.957
|-
| |
|3-edo & Yo & Loru
| | 32/27, 10/9 (16/15), 22/21
|(P8/3, ^1)
| | 3 5 7 0 2<br>0 0 0 1 1
| | .771
| | 47.381
| | 25.592
|-
| |
|Gubi & Zogu & Lu
| | 16/15, 21/20, 12/11
|(P8, P5)
| | 1 0 4 6 2<br>0 1 -1 -2 1
| | .776
| | 45.662
| | 24.928
|-
| |
|Gugu & Zogu & Logu
| | 27/25, 21/20, 11/10 (22/21)
|(P8, P4/2)
| | 1 0 0 2 1<br>0 2 3 1 3
| | .796
| | 38.983
| | 22.203
|-
| |
|Gugu & Zogu & Lu
| | 27/25, 21/20, 12/11
|(P8, P4/2)
| | 1 0 0 2 2<br>0 2 3 1 2
| | .807
| | 41.497
| | 24.184
|-
| |
|Gubi & Zo & Lu
| | 16/15, 28/27, 12/11
|(P8, P5)
| | 1 0 4 -2 2<br>0 1 -1 3 1
| | .832
| | 38.874
| | 23.823
|-
| |
|Yoyo & Zogu & Logu
| | 25/24, 21/20, 11/10 (22/21)
|(P8, P5/2)
| | 1 1 2 3 3<br>0 2 1 -1 1
| | .833
| | 47.271
| | 29.071
|-
| | Dicot
|Yoyo & Ruyo & Loru
| | 25/24, 15/14, 22/21
|(P8, P5/2)
| | 1 1 2 2 2<br>0 2 1 3 5
| | .854
| | 30.986
| | 19.854
|-
| |
|Gu & Zo & Logu
| | 16/15, 28/27, 11/10
|(P8, P5)
| | 1 0 4 -2 5<br>0 1 -1 3 -1
| | .905
| | 43.667
| | 30.795
|-
| |
|5-edo & Gubi & Zogu + ela
| | 256/243, 16/15, 21/20 (28/27)
|(P8/5, ^1)
| | 5 8 12 14 0<br>0 0 0 0 1
| | .923
| | 33.964
| | 24.785
|-
| |
|Yoyobi & Ruyo & Loru
| | 75/64, 15/14 (35/32), 22/21
|(P8, P4/2)
| | 1 0 3 2 1<br>0 2 -1 1 3
| | .931
| | 43.645
| | 32.259
|-
| |
|Gubi & Zogu & Luzoyo
| | 16/15, 21/20, 35/33
|(P8, P5)
| | 1 0 4 6 10<br>0 1 -1 -2 -4
| | .979
| | 40.847
| | 32.831
|-
| |
|Gubi & Zo & Loru
| | 16/15, 28/27, 22/21
|(P8, P5)
| | 1 0 4 -2 -3<br>0 1 -1 3 4
| | .986
| | 25.28
| | 20.589
|-
| |
|Yoyo & Zogu & Lo
| | 25/24, 21/20, 33/32
|(P8, P4/2)
| | 1 1 2 3 4<br>0 2 1 -1 -2
| | 1.016
| | 29.191
| | 24.988
|-
| |
|Layobi & Ruyo & Loru
| | 135/128, 15/14, 22/21 (33/32)
|(P8, P5)
| | 1 0 7 6 5<br>0 1 -3 -2 -1
| | 1.023
| | 30.999
| | 26.828
|-
| |
|Gu & Zogu & Luzoyo
| | 81/80, 21/20 (28/27), 35/33
|(P8, P5)
| | 1 0 -4 -2 -6<br>0 1 4 3 6
| | 1.042
| | 27.464
| | 24.506
|-
| |
|Yoyo & Ruyo & Lo
| | 25/24, 15/14, 33/32
|(P8, P5/2)
| | 1 1 2 2 4<br>0 2 1 3 -2
| | 1.067
| | 29.219
| | 27.114
|-
| |
|Yoyo & Zogu & Luyo
| | 25/24, 21/20, 45/44
|(P8, P5/2)
| | 1 1 2 3 2<br>0 2 1 -1 5
| | 1.087
| | 26.805
| | 25.660
|-
| | Meanertone
|Gu & Zogu & Lo
| | 81/80, 21/20 (28/27), 33/32
|(P8, P5)
| | 1 0 -4 -2 5<br>0 1 4 3 -1
| | 1.138
| | 24.359
| | 25.167
|-
| | Pento
|Gugu & Zogu & Luyo
| | 27/25, 21/20 [36/35], 45/44
|(P8, P4/2)
| | 1 0 0 2 -2<br>0 2 3 1 7
| | 1.138
| | 22.068
| | 22.799
|-
| | Pentoid
|Gugu & Zogu & Lo
| | 27/25, 21/20, 33/32
|(P8, P4/2)
| | 1 0 0 2 5<br>0 2 3 1 -2
| | 1.142
| | 21.771
| | 22.649
|-
| | Meansept
|Gu & Ruyo & Loru
| | 81/80, 15/14, 22/21 (45/44 55/49)
|(P8, P5)
| | 1 0 -4 -5 -6<br>0 1 4 5 6
| | 1.148
| | 30.989
| | 32.521
|-
| | Sharp
|Yoyo & Zo & Luzoyo
| | 25/24, 28/27, 35/33 (45/44)
|(P8, P5/2)
| | 1 1 2 1 2<br>0 2 1 6 5
| | 1.196
| | 19.922
| | 22.366
|-
| |
|Gubi & Biruyo & Loru
| | 16/15, 50/49, 22/21
|(P8/2, P5)
| | 2 0 8 9 7<br>0 1 -1 -1 0
| | 1.208
| | 25.57
| | 29.193
|-
| |
|Layobi & Zogu & Lo
| | 135/128, 21/20, 33/32 (45/44)
|(P8, P5)
| | 1 0 7 9 5<br>0 1 -3 -4 -1
| | 1.226
| | 19.454
| | 22.753
|-
| |
|Gubi & Zo & Luruyo
| | 16/15, 28/27 [36/35], 80/77 (77/75)
|(P8, P5)
| | 1 0 4 -2 10<br>0 1 -1 3 -4
| | 1.258
| | 23.058
| | 28.153
|-
| | Hystrix
|Triyo & Rugu & Loru
| | 250/243, 36/35, 22/21 [55/54] (80/77)
|(P8, P4/3)
| | 1 2 3 3 4<br>0 -3 -5 -1 -4
| | 1.335
| | 19.86
| | 26.790
|-
| | Arnold
|Gu & Rugu & Loru
| | 81/80, 36/35 (64/63), 22/21 (33/32)
|(P8, P5)
| | 1 0 -4 6 5<br>0 1 4 -2 -1
| | 1.340
| | 19.265
| | 26.141
|-
| |
|5-edo (& Zo & Loru) + ya
| | 256/243, 28/27, 22/21 (33/32)
|(P8/5, ^1)
| | 5 8 0 14 17<br>0 0 1 0 0
| | 1.358
| | 22.998
| | 31.934
|-
| |
|Quadgu & Rugu & Loru
| | 648/625, 36/35 (50/49), 22/21
|(P8/4, P5)
| | 4 0 3 5 1<br>0 1 1 1 2
| | 1.415
| | 18.282
| | 27.164
|-
| |
|Yoyo & Ru & Loru
| | 25/24, 64/63, 22/21 (33/32)
|(P8, P5/2)
| | 1 1 2 4 4<br>0 2 1 -4 -2
| | 1.431
| | 20.956
| | 31.719
|-
| | Ferrum
|5-edo & Zo & Luzoyo
| | 256/243, 28/27 (49/48), 35/33
|(P8/5, ^1)
| | 5 8 0 14 6<br>0 0 1 0 1
| | 1.443
| | 20.107
| | 30.883
|-
| | Decibel
|Yoyo & Zozo & Luzoyo
| | 25/24, 49/48, 35/33
|(P8/2, P4/2)
| | 2 0 3 4 7<br>0 2 1 1 0
| | 1.461
| | 20.67
| | 32.385
|-
| |
|Sayoyo & Zo & Loru
'''(Zo & Biruyo & Loru?)'''
| | 800/729, 28/27 (50/49), 22/21 '''(sayoyo is too obscure?)'''
|(P8/2, P5)
| | 2 0 -5 -4 -6<br>0 1 3 3 4
| | 1.495
| | 19.317
| | 31.468
|-
| |
|Yoyo & Zo & Lo
| | 25/24, 28/27, 33/32
|(P8, P5/2)
| | 1 1 2 1 4<br>0 2 1 6 -2
| | 1.500
| | 19.693
| | 32.239
|-
| | August
|Trigu & Rugu & Luyo
| | 128/125, 36/35, 45/44 (56/55)
|(P8/3, P5)
| | 3 0 7 -1 1<br>0 1 0 2 2
| | 1.506
| | 12.245
| | 20.191
|-
| | Domineering
|Gu & Rugu & Luyo
| | 81/80, 36/35 (64/63), 45/44
|(P8, P5)
| | 1 0 -4 6 -6<br>0 1 4 -2 6
| | 1.523
| | 13.075
| | 21.978
|-
| | Jamesbond
|7-edo (& Gu & Lo) + za
| | [-11 7], (25/24) 81/80, 33/32 (45/44)
|(P8/7,^1)
| | 7 11 16 0 24<br>0 0 0 1 0
| | 1.564
| | 13.396
| | 23.524
|-
| | Diminished
|Quadgu & Rugu & Luzogu
| | 648/625, 36/35 (50/49), 56/55
|(P8/4, P5)
| | 4 0 3 5 14<br>0 1 1 1 0
| | 1.582
| | 12.367
| | 22.132
|-
| | Armodue
|Layobi & Rugu & Lo
| | 135/128, 36/35, 33/32 (45/44)
|(P8, P5)
| | 1 0 7 -5 5<br>0 1 -3 5 -1
| | 1.603
| | 14.879
| | 27.211
|-
| | Dichotic
|Yoyo & Ru & Luyo
| | 25/24, 64/63, 45/44 (55/54)
|(P8, P5/2)
| | 1 1 2 4 2<br>0 2 1 -4 5
| | 1.630
| | 16.311
| | 30.680
|-
| | Opossum
|Triyo & Zo & Luzogu
| | 250/243, 28/27, 56/55 ([55/54] 77/75)
|(P8, P4/3)
| | 1 2 3 4 4<br>0 -3 -5 -9 -4
| | 1.692
| | 11.146
| | 22.325
|-
| | Octokaidecal
|Sayoyo & Zo & Luzogu
| | 800/729, 28/27 (50/49), 56/55 (55/54)
|(P8/2, P5)
| | 2 0 -5 -4 7<br>0 1 3 3 0
| | 1.698
| | 15.008
| | 30.235
|-
| | Pajaric
|Sagugu & Ru & Luyo
| | [11 -4 -2], '''(50/49)''' 64/63, 45/44 (56/55) '''(torsion)'''
|(P8/2, P5)
| | 2 0 11 12 7<br>0 1 -2 -2 0
| | 1.722
| | 11.548
| | 23.798
|-
| | Progression
|Quingubi & Rugu & Luzogu
| | [7 3 -5], 36/35, 56/55 (77/75)
|(P8, P5/5)
| | 1 1 2 2 3<br>0 5 3 7 4
| | 1.749
| | 12.314
| | 26.050
|-
| | Decimal
|Yoyo & Zozo & Luyo
| | 25/24, 49/48 (50/49), 45/44
|(P8/2, P4/2)
true double
| | 2 0 3 4 -1<br>0 2 1 1 5
| | 1.751
| | 12.599
| | 26.712
|-
| | Blacksmith
|5-edo & Zo & Loyo
| | 256/243, 28/27 (49/48 64/63), 55/54
|(P8/5, ^1)
| | 5 8 0 14 29<br>0 0 1 0 -1
| | 1.825
| | 10.85
| | 24.641
|-
| | Demolished
|Quadgu & Rugu & Luyo
| | 648/625, 36/35 (50/49), 45/44
|(P8/4, P5)
| | 4 0 3 5 -5<br>0 1 1 1 3
| | 1.831
| | 11.635
| | 26.574
|-
| | Dominant
|Gu & Rugu & Luzogu
| | 81/80, 36/35 (64/63), 56/55
|(P8, P5)
| | 1 0 -4 6 13<br>0 1 4 -2 -6
| | 1.864
| | 10.279
| | 24.180
|-
| | Decimated
|Yoyo & Zozo & Lo
| | 25/24, 49/48, 33/32
|(P8/2, P4/2)
true double
| | 2 0 3 4 10<br>0 2 1 1 -2
| | 1.886
| | 13.109
| | 31.456
|-
| | Meanenneadecal
|Gu & Zotrigu & Luyo
| | 81/80, 126/125, 45/44 (56/55)
|(P8, P5)
| | 1 0 -4 -13 -6<br>0 1 4 10 6
| | 1.918
| | 8.680
| | 21.423
|-
| | Sidi
|Yoyo & Zozoyo & Luyo
| | 25/24, 245/243, 45/44 (99/98)
|(P8, P11/4)
| | 1 3 3 6 7<br>0 -4 -2 -9 -10
| | 1.958
| | 12.902
| | 32.957
|-
| | Ferrier
|5-edo & Zo & Lozogugu
| | 256/243, 28/27 (49/48 64/63), 77/75
|(P8/5, ^1)
| | 5 8 0 14 -6<br>0 0 1 0 2
| | 1.993
| | 11.103
| | 29.200
|-
| | Superpelog
|Layobi & Zozo & Lo
| | 135/128, 49/48, 33/32 (45/44)
|(P8, P4/2)
| | 1 0 7 2 5<br>0 2 -6 1 -2
| | 2.016
| | 10.640
| | 28.535
|-
| | Negri
|Laquadyo & Ruyoyo & Luyo
| | [-14 3 4], '''(49/48)''' 225/224, 45/44 (56/55) '''(torsion)'''
|(P8, P4/4)
| | 1 2 2 3 4<br>0 -4 3 -2 -5
| | 2.038
| | 9.594
| | 26.190
|-
| | Inflated
|Trigu & Zo & Luzogu
| | 128/125, 28/27, 56/55 [55/54]
|(P8/3, P5)
| | 3 0 7 -6 -4<br>0 1 0 3 3
| | 2.102
| | 10.843
| | 31.171
|-
| | Injera
|Gu & Biruyo & Luyo
| | 81/80, 50/49, 45/44
|(P8/2, P5)
| | 2 0 -8 -7 -12<br>0 1 4 4 6
| | 2.153
| | 7.728
| | 23.124
|-
| | Negric
|Laquadyo & Ruyoyo & Lu
| | [-14 3 4], '''(49/48)''' 225/224, 33/32 (77/75) '''(torsion)'''
|(P8, P4/4)
| | 1 2 2 3 3<br>0 -4 3 -2 4
| | 2.198
| | 9.886
| | 30.617
|-
| | Triforce
|Trigu & Zozo & Luzogu
| | 128/125, 49/48, 56/55
|(P8/3, P4/2)
| | 3 0 7 6 8<br>0 2 0 1 1
| | 2.201
| | 8.427
| | 26.152
|-
| | Duodecim
|12-edo (& Gu & Rugu) + ela
| | [-19 12], 81/80, 36/35 (50/49 64/63)
|(P8/12, ^1)
| | 12 19 28 34 0<br>0 0 0 0 1
| | 2.201
| | 9.839
| | 30.536
|-
| | Meanundeci
|Gu & Zotrigu & Lo
| | 81/80, 126/125, 33/32 (55/54 77/75)
|(P8, P5)
| | 1 0 -4 -13 5<br>0 1 4 10 -1
| | 2.204
| | 10.143
| | 31.539
|-
| | Semafour
|Gu & Zozo & Lo
| | 81/80, 49/48, 33/32 (55/54)
|(P8, P4/2)
| | 1 0 -4 2 5<br>0 2 8 1 -2
| | 2.212
| | 9.111
| | 28.510
|-
| | Augene
|Trigu & Ru & Luzogu
| | 128/125, 64/63, 56/55 (100/99)
|(P8/3, P5)
| | 3 0 7 18 20<br>0 1 0 -2 -2
| | 2.286
| | 5.932
| | 19.613
|-
| | Godzilla
|Gu & Zozo & Luyo
| | 81/80, 49/48, 45/44
|(P8, P4/2)
| | 1 0 -4 2 -6<br>0 2 8 1 12
| | 2.343
| | 8.404
| | 28.947
|-
| | Darjeeling
|Tribiyo & Zotrigu & Loyo
| | [-6 -5 6], '''(49/48)''' 126/125, 55/54 (77/75) '''(torsion)'''
|(P8, P12/6)
| | 1 0 1 2 0<br>0 6 5 3 13
| | 2.347
| | 8.002
| | 27.648
|-
| | Progress
|Satrigu & Ru & Luzogu
| | [15 -5 -3], 64/63, 56/55 (77/75)
|(P8, P11/3)
| | 1 0 5 6 4<br>0 3 -5 -6 -1
| | 2.399
| | 8.662
| | 31.036
|-
| | Hedgehog
|Triyo & Biruyo & Loyo
| | 250/243, 50/49, 55/54 (99/98)
|(P8/2, P4/3)
| | 2 1 1 2 4<br>0 3 5 5 4
| | 2.439
| | 6.273
| | 23.095
|-
| | Keemun
|Tribiyo & Zozo & Luzogu
| | [-6 -5 6], '''(49/48)''' 126/125, 56/55 (100/99) '''(torsion)'''
|(P8, P12/6)
| | 1 0 1 2 4<br>0 6 5 3 -2
| | 2.468
| | 7.298
| | 27.410
|-
| | Porcupine
|Triyo & Ru & Loyo
| | 250/243, 64/63, 55/54 (100/99)
|(P8, P4/3)
| | 1 2 3 2 4<br>0 -3 -5 6 -4
| | 2.478
| | 5.703
| | 21.562
|-
| | Pajara
|Sagugu & Ru & Luyoyo
| | [11 -4 -2], '''(50/49)''' 64/63, 100/99 (99/98) '''(torsion)'''
|(P8/2, P5)
| | 2 0 11 12 26<br>0 1 -2 -2 -6
| | 2.543
| | 5.151
| | 20.343
|-
| | Nautilus
|Triyo & Zozo & Loyo
| | 250/243, 49/48, 55/54 (100/99)
|(P8, P4/6)
| | 1 2 3 3 4<br>0 -6 -10 -3 -8
| | 2.548
| | 6.568
| | 26.023
|-
| | Pajarous
|Sagugu & Ru & Loyo
| | [11 -4 -2], '''(50/49)''' 64/63, 55/54
|(P8/2, P5)
| | 2 0 11 12 -9<br>0 1 -2 -2 5
| | 2.718
| | 6.427
| | 28.349
|-
| | Telepathy
|Laquinyo & Ruyoyo & Loyo
| | [-10 -1 5], 225/224, 55/54 (99/98 176/175)
|(P8, P12/5)
| | 1 0 2 -1 -1<br>0 5 1 12 14
| | 2.864
| | 5.631
| | 27.109
|-
| | Sensis
|Sepgu & Zotrigu & Luzogu
| | [2 9 -7], 126/125 (245/243), 56/55 [100/99]
|(P8, WW5/7)
| | 1 6 8 11 6<br>0 -7 -9 -13 -4
| | 2.98
| | 5.578
| | 28.680
|-
| | Suprapyth
|Sayo & Ru & Loyo
| | [12 -9 1], 64/63, 55/54 (99/98)
|(P8, P5)
| | 1 0 -12 6 13<br>0 1 9 -2 -6
| | 3.011
| | 6.264
| | 32.768
|-
| | Porky
|Triyo & Ruyoyo & Loyo
| | 250/243, 225/224, 55/54 (100/99)
|(P8, P4/3)
| | 1 2 3 5 4<br>0 -3 -5 -16 -4
| | 3.020
| | 5.186
| | 27.268
|-
| | Meantone
|Gu & Zotrigu & Loruru
| | 81/80, 126/125, 99/98
|(P8, P5)
| | 1 0 -4 -13 -25<br>0 1 4 10 18
| | 3.031
| | 3.218
| | 17.027
|-
| | Ringo
|Sasa-gugu & Ru & Luzogu
| | [19 -9 -2], 64/63, 56/55 (243/242)
|(P8, P5/2)
| | 1 1 5 4 2<br>0 2 -9 -4 5
| | 3.126
| | 5.902
| | 32.863
|-
| | Orwell
|Lasepyo & Ruyoyo & Loruru
| | [-21 3 7], 225/224, 99/98 (121/120 176/175)
|(P8, P12/7)
| | 1 0 3 1 3<br>0 7 -3 8 2
| | 3.242
| | 2.574
| | 15.231
|-
| | Doublewide
|Quadbiyo & Zotriyo & Luyoyo
| | [-9 -6 8], '''(50/49)''' '''875/864''', 100/99 (99/98 385/384)
|(P8/2, Wm7/8)
| | 2 1 3 4 8<br>0 4 3 3 -2
| | 3.407
| | 4.988
| | 32.058
|-
| | Superpyth
|Sayo & Ru & Luyoyo
| | [12 -9 1], 64/63 (245/243), 100/99
|(P8, P5)
| | 1 0 -12 6 -22<br>0 1 9 -2 16
| | 3.410
| | 3.88
| | 24.976
|-
| | Squares
|Gu & Laquadru & Loruru
| | 81/80, [-3 9 0 -4], 99/98 (121/120)
|(P8, P11/4)
| | 1 3 8 6 7<br>0 -4 -16 -9 -10
| | 3.486
| | 3.240
| | 21.636
|-
| | Quasisupra
|Sasagu & Ru & Loruru
| | [23 -13 -1], 64/63, 99/98 (121/120)
|(P8, P5)
| | 1 0 23 6 13<br>0 1 -13 -2 -6
| | 3.49
| | 4.812
| | 32.203
|-
| | Valentine
|Satritrigu & Zotrigu & Lorugugu
| | [13 5 -9], 126/125, '''(121/120)''' 176/175
|(P8, P5/9)
| | 1 1 2 3 3<br>0 9 5 -3 7
| | 3.651
| | 2.313
| | 16.687
|-
| | Magic
|Laquinyo & Ruyoyo & Luyoyo
| | [-10 01 5], 225/224 (245/243), 100/99
|(P8, P12/5)
| | 1 0 2 -1 6<br>0 5 1 12 -8
| | 3.715
| | 2.741
| | 20.352
|-
| | Meanpop
|Gu & Zotrigu & Lozoyo
| | 81/80, 126/125, 385/384
|(P8, P5)
| | 1 0 -4 -13 24<br>0 1 4 10 -13
| | 3.820
| | 2.770
| | 21.543
|-
| | Mohajira
|Gu & Sarurutrigu & Lorugugu
| | 81/80, '''6144/6125''', '''(121/120)''' 176/175 (243/242)
|(P8, P5/2)
| | 1 1 0 6 2<br>0 2 8 -11 5
| | 3.863
| | 3.288
| | 26.064
|-
| | Cassandra
|Layo & Ruyoyo & Luyoyo
| | [-15 8 1], 225/224, 100/99 (245/242)
|(P8, P5)
| | 1 0 15 25 32<br>0 1 -8 -14 -18
| | 3.897
| | 2.929
| | 23.556
|-
| | Nusecond
|Legu & Zotrigu & Loruru
| | [5 13 -11], 126/125, 99/98 (121/120)
|(P8, P11/11)
| | 1 3 4 5 5<br>0 -11 -13 -17 -12
| | 3.927
| | 3.146
| | 25.621
|-
| | Migration
|Gu & Zotrigu & Lologu
| | 81/80, 126/125, 121/120 (243/242)
|(P8, P5/2)
| | 1 1 0 -3 2<br>0 2 8 20 5
| | 3.935
| | 3.123
| | 25.516
|-
| | Mothra
|Gu & Latrizo & Loruru
| | 81/80, 1029/1024, 99/98 (385/384)
|(P8, P5/3)
| | 1 1 0 3 5<br>0 3 12 -1 -8
| | 3.99
| | 3.066
| | 25.642
|-
| | Octacot
|Saquadyo & Zozoyo & Luyoyo
| | [5 -9 4], 245/243, 100/99 (243/242 245/242)
|(P8, P5/8)
| | 1 1 1 2 2<br>0 8 18 11 20
| | 4.070
| | 2.785
| | 24.078
|-
| | Myna
|Quinbigu & Zotrigu & Lorugugu
| | [9 9 -10], 126/125, 176/175 (243/242)
|(P8, WWP5/10)
| | 1 9 9 8 22<br>0 -10 -9 -7 -25
| | 4.127
| | 1.903
| | 16.842
|-
| | Superkleismic
|Tritriyo & Zotriyo & Luyoyo
| | [-5 -10 9], 875/864, 100/99 (245/242 385/384)
|(P8, WWP4/9)
| | 1 4 5 2 4<br>0 -9 -10 3 -2
| | 4.137
| | 2.888
| | 25.659
|-
| | Würschmidt
|Saquadbigu & Ruyoyo & Loruru
| | [17 1 -8], 225/224, 99/98 (176/175 243/242)
|(P8, WWP5/8)
| | 1 7 3 15 17<br>0 -8 -1 -18 -20
| | 4.344
| | 2.533
| | 24.413
|-
| | Miracle
|Lala-tribiyo & Ruyoyo & Lozoyo
| | [-25 7 6], 225/224, 385/384 (441/440)
|(P8, P5/6)
| | 1 1 3 3 2<br>0 6 -7 -2 15
| | 4.405
| | 1.083
| | 10.684
|-
| | Mosura
|Gu & Latrizo & Lorugugu
| | 81/80, 1029/1024, 176/175
|(P8, P5/3)
| | 1 1 0 3 -1<br>0 3 12 -1 23
| | 4.411
| | 3.170
| | 31.334
|-
| | Sensus
|Sepgu & Zotrigu & Lorugugu
| | [2 9 -7], 126/125, 176/175
|(P8, WWP5/7)
| | 1 6 8 11 23<br>0 -7 -9 -13 -31
| | 4.503
| | 2.882
| | 29.486
|-
| | Shrutar
|Sagugu & Zozoyo & Lorugugu
| | [11 -4 -2], 245/243, '''(121/120)''' 176/175
|(P8/2, M2/4)
| | 2 1 9 -2 8<br>0 2 -4 7 -1
| | 4.530
| | 2.563
| | 26.489
|-
| | Revelation
|Lala-tribiyo & Ruyoyo & Loruru
| | [-25 7 6], 225/224 (1029/1024), 99/98 [176/175]
|(P8, P5/6)
| | 1 1 3 3 5<br>0 6 -7 -2 -16
| | 4.531
| | 3.187
| | 32.946
|-
| | Tritonic
|Lala-quinyo & Ruyoyo & Luzozogu
| | [-29 11 5], 225/224, '''(121/120)''' 441/440
|(P8, WWP4/5)
| | 1 4 -3 -3 2<br>0 -5 11 12 3
| | 4.596
| | 2.234
| | 23.659
|-
| | Bunya
|Saquadyo & Ruyoyo & Luyoyo
| | [5 -9 4], 225/224, 100/99 (243/242)
|(P8, P5/4)
| | 1 1 1 -1 2<br>0 4 9 26 10
| | 4.833
| | 2.722
| | 31.332
|-
| | Diaschismic
|Sagugu & Zotrigu & Lorugugu
| | 2048/2025, 126/125, 176/175
|(P8/2, P5)
| | 2 0 11 31 45<br>0 1 -2 -8 -12
| | 5.048
| | 2.023
| | 25.034
|-
| | Septimin
|Lala-leyo & Ruyoyo & Lozoyo
| | [-35 6 11], 225/224, '''(245/242)''' 385/384
|(P8, WWP4/11)
| | 1 4 1 5 5<br>0 -11 6 -10 -7
| | 5.089
| | 2.496
| | 31.309
|-
| | Witchcraft
|Laquinyo & Ruyoyo & Luzozogu
| | [-10 -1 5], 225/224 (245/243), 441/440
|(P8, P12/5)
| | 1 0 2 -1 -7<br>0 5 1 12 33
| | 5.419
| | 2.204
| | 30.706
|-
| | Thuja
|Saquadtrigu & Zotrigu & Lorugugu
| | [20 5 -12], 126/125, 176/175 (1344/1331)
|(P8, W<sup>5</sup>P5/12)
| | 1 8 5 -2 4<br>0 -12 -5 9 -1
| | 5.622
| | 2.233
| | 33.078
|-
| | Hemiwur
|Saquadbigu & Zozoquingu & Lorugugu
| | [17 1 -8], '''(2401/2400)''' 3136/3125, '''(121/120)''' 176/175 (1375/1372)
|(P8, WWP5/16)
| | 1 15 4 7 11<br>0 -16 -2 -5 -9
| | 5.723
| | 1.918
| | 29.270
|-
| | Rodan
|Sasa-triyo & Saruyo & Lozoyo
| | [20 -17 3], '''(245/243)''' 5120/5103, 385/384 (441/440)
|(P8, P5/3)
| | 1 1 -1 3 6<br>0 3 17 -1 -13
| | 5.754
| | 1.50
| | 23.093
|-
| | Echidna
|Sagugu & Triru-agu & Lorugugu
| | 2048/2025, 1728/1715, 176/175 (540/539 896/891)
|(P8/2, P4/3)
| | 2 1 9 2 12<br>0 3 -6 5 -7
| | 5.898
| | 1.62
| | 25.987
|-
| | Semisept
|
| | 1331/1323 176/175 540/539
|
| | 1 12 6 12 20<br>0 -17 -6 -15 -27
| | 5.969
| | 1.373
| | 22.476
|-
| | Newspeak
|
| | 1728/1715 225/224 441/440
|
| | 1 0 3 1 -4<br>0 7 -3 8 33
| | 6.006
| | 1.901
| | 31.438
|-
| | Hemififths
|
| | 896/891 243/242 441/440
|
| | 1 1 -5 -1 2<br>0 2 25 13 5
| | 6.148
| | 1.367
| | 23.498
|-
| | Garibaldi
|
| | 2200/2187 225/224 385/384
|
| | 1 0 15 25 -33<br>0 1 -8 -14 23
| | 6.365
| | 1.504
| | 27.396
|-
| | Wizard
|
| | 225/224 385/384 4000/3993
|
| | 2 1 5 2 8<br>0 6 -1 10 -3
| | 6.421
| | 1.003
| | 18.539
|-
| | Slender
|
| | 1331/1323 225/224 385/384
|
| | 1 2 2 3 4<br>0 -13 10 -6 -17
| | 6.727
| | 1.269
| | 25.342
|-
| | Compton
|
| | 225/224 4375/4356 441/440
|
| | 12 19 0 -22 -42<br>0 0 1 2 3
| | 6.767
| | 1.102
| | 22.235
|-
| | Hemithirds
|
| | 3136/3125 385/384 441/440
|
| | 1 4 2 2 7<br>0 -15 2 5 -22
| | 7.040
| | .882
| | 19.003
|-
| | Catakleismic
|
| | 225/224 385/384 4375/4374
|
| | 1 0 1 -3 9<br>0 6 5 22 -21
| | 7.254
| | .965
| | 21.849
|-
| | Harry
|
| | 243/242 441/440 4000/3993
|
| | 2 4 7 7 9<br>0 -6 -17 -10 -15
| | 7.373
| | .682
| | 15.867
|-
| | Pluto
|
| | 896/891 1375/1372 540/539
|
| | 1 5 15 15 2<br>0 -7 -26 -25 3
| | 7.524
| | 1.24
| | 29.844
|-
| | Unidec
|
| | 385/384 441/440 12005/11979
|
| | 2 5 8 5 6<br>0 -6 -11 2 3
| | 7.532
| | .642
| | 15.479
|-
| | Ennealimmic
|
| | 4375/4356 243/242 441/440
|
| | 9 1 1 12 -2<br>0 2 3 2 5
| | 7.578
| | .835
| | 20.347
|-
| | Tritikleismic
|
| | 385/384 441/440 4000/3993
|
| | 3 0 3 10 8<br>0 6 5 -2 3
| | 7.587
| | .792
| | 19.333
|-
| | Hemiwürschmidt
|
| | 243/242 3136/3125 441/440
|
| | 1 15 4 7 37<br>0 -16 -2 -5 -40
| | 7.793
| | .825
| | 21.069
|-
| | Marvolo
|
| | 225/224 441/440 4000/3993
|
| | 1 2 1 1 2<br>0 -6 19 26 21
| | 7.935
| | 1.101
| | 28.965
|-
| | Bikleismic
|
| | 225/224 4375/4356 243/242
|
| | 2 0 2 -6 -1<br>0 6 5 22 15
| | 8.191
| | 1.057
| | 29.319
|-
| | Catalytic
|
| | 225/224 441/440 4375/4374
|
| | 1 0 1 -3 -10<br>0 6 5 22 51
| | 8.212
| | 1.092
| | 30.422
|-
| | Enneaportent
|
| | 225/224 385/384 12005/11979
|
| | 9 0 28 11 24<br>0 2 -1 2 1
| | 8.286
| | 1.076
| | 30.426
|-
| | Marvo
|
| | 225/224 243/242 4000/3993
|
| | 1 5 12 29 12<br>0 -6 -17 -46 -15
| | 8.731
| | 1.027
| | 31.685
|-
| | Octoid
|
| | 1375/1372 540/539 4000/3993
|
| | 8 1 3 3 16<br>0 3 4 5 3
| | 9.170
| | .421
| | 14.097
|-
| | Tertia
|
| | 1331/1323 385/384 1375/1372
|
| | 1 3 2 3 5<br>0 -22 5 -3 -24
| | 9.182
| | .899
| | 30.171
|-
| | Guiron
|
| | 10976/10935 385/384 441/440
|
| | 1 1 7 3 -2<br>0 3 -24 -1 28
| | 9.377
| | .767
| | 26.648
|-
| | Neominor
|
| | 243/242 35937/35840 441/440
|
| | 1 3 12 8 7<br>0 -6 -41 -22 -15
| | 9.493
| | .788
| | 27.959
|-
| | Grendel
|
| | 1375/1372 540/539 5632/5625
|
| | 1 9 2 7 17<br>0 -23 1 -13 -42
| | 9.729
| | .537
| | 19.845
|-
| | Hemiseven
|
| | 19683/19600 385/384 441/440
|
| | 1 4 14 2 -5<br>0 -6 -29 2 21
| | 9.733
| | .770
| | 28.467
|-
| | Sqrtphi
|
| | 4375/4356 1375/1372 540/539
|
| | 1 12 11 16 17<br>0 -30 -25 -38 -39
| | 9.756
| | .687
| | 25.515
|-
| | Commatic
|
| | 3388/3375 8019/8000 441/440
|
| | 2 3 4 5 6<br>0 5 19 18 27
| | 9.831
| | .810
| | 30.461
|-
| | Sesquart
|
| | 243/242 16384/16335 441/440
|
| | 1 1 7 5 2<br>0 4 -32 -15 10
| | 9.891
| | .772
| | 29.306
|-
| | Quadritikleismic
|
| | 385/384 1375/1372 9801/9800
|
| | 4 0 4 7 17<br>0 6 5 4 -3
| | 10.315
| | .575
| | 23.406
|-
| | Mirkat
|
| | 8019/8000 1375/1372 540/539
|
| | 3 2 1 2 9<br>0 6 13 14 3
| | 10.575
| | .521
| | 22.126
|-
| | Bisupermajor
|
| | 3388/3375 385/384 9801/9800
|
| | 2 1 6 1 8<br>0 8 -5 17 -4
| | 10.578
| | .755
| | 32.080
|-
| | Cotritone
|
| | 385/384 1375/1372 4000/3993
|
| | 1 17 9 10 5<br>0 -30 -13 -14 -3
| | 10.735
| | .740
| | 32.225
|-
| | Kwai
|
| | 16384/16335 1375/1372 540/539
|
| | 1 0 -50 -40 32<br>0 1 33 27 -18
| | 11.134
| | .567
| | 26.219
|-
| | Triwell
|
| | 385/384 441/440 456533/455625
|
| | 1 7 0 1 13<br>0 -21 9 7 -37
| | 11.163
| | .642
| | 29.807
|-
| | Supers
|
| | 5120/5103 540/539 4000/3993
|
| | 2 1 -12 2 -9<br>0 3 23 5 22
| | 11.476
| | .580
| | 28.240
|-
| | Ennealiminal
|
| | 385/384 1375/1372 4375/4374
|
| | 9 1 1 12 51<br>0 2 3 2 -3
| | 11.678
| | .621
| | 31.123
|-
| | Bischismic
|
| | 3136/3125 8019/8000 441/440
|
| | 2 0 30 69 102<br>0 1 -8 -20 -30
| | 11.743
| | .557
| | 28.160
|-
| | Septisuperfourth
|
| | 540/539 4000/3993 5632/5625
|
| | 2 4 4 7 6<br>0 -9 7 -15 10
| | 12.086
| | .464
| | 24.619
|-
| | Amity
|
| | 5120/5103 540/539 5632/5625
|
| | 1 3 6 -2 21<br>0 -5 -13 17 -62
| | 12.537
| | .559
| | 31.506
|-
| | Quincy
|
| | 441/440 4000/3993 41503/41472
|
| | 1 2 3 3 4<br>0 -30 -49 -14 -39
| | 12.684
| | .537
| | 30.875
|-
| | Octowerck
|
| | 441/440 8019/8000 41503/41472
|
| | 8 0 -11 14 15<br>0 3 7 2 3
| | 13.282
| | .486
| | 30.159
|-
| | Hemiamity
|
| | 5120/5103 3025/3024 4375/4374
|
| | 2 1 -1 13 13<br>0 5 13 -17 -14
| | 13.714
| | .478
| | 31.307
|-
| | Eris
|
| | 1375/1372 540/539 65625/65536
|
| | 1 10 0 6 20<br>0 -29 8 -11 -57
| | 13.875
| | .414
| | 27.621
|-
| | Unthirds
|
| | 2401/2400, 3025/3024, 4000/3993
|
| | 1 29 33 25 25<br>0 -42 -47 -34 -33
| | 14.390
| | .323
| | 22.926
|-
| | Alphaquarter
|
| | 5120/5103 4000/3993 3025/3024
|
| | 1 2 2 0 3<br>0 -9 7 61 10
| | 14.588
| | .408
| | 29.638
|-
| | Hemiennealimmal
|
| | 2401/2400 3025/3024 4375/4374
|
| | 18 0 -1 22 48<br>0 2 3 2 1
| | 14.648
| | .0860
| | 6.283
|-
| | Vishnu
|
| | 3025/3024 4375/4374 5632/5625
|
| | 2 4 5 10 10<br>0 -7 -3 -37 -26
| | 14.963
| | .187
| | 14.180
|-
| | Quanharuk
|
| | 1375/1372 540/539 32805/32768
|
| | 1 0 15 12 -7<br>0 5 -40 -29 33
| | 15.170
| | .407
| | 31.549
|-
| | Sternscape
|
| | 540/539 4000/3993 137781/137500
|
| | 6 3 2 6 11<br>0 6 11 10 9
| | 15.352
| | .406
| | 32.096
|-
| | Pogo
|
| | 540/539 4000/3993 32805/32768
|
| | 2 1 22 2 25<br>0 3 -24 5 -25
| | 15.953
| | .378
| | 31.857
|}
=Junk temperaments=
Some of these contain the trivial commas 1-edo, Yobi, Rubi and Loquad, which set some prime to some number of octaves, and in effect remove the prime from the subgroup. These trivial commas can be omitted from the temperament name if desired.
A fourth comma is included in the comma list if it has the same or smaller odd limit, and roughly the same or smaller size in cents. This comma isn't used in the temperament name, and is in parentheses.
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-