Kite's color notation/Temperament names: Difference between revisions
No edit summary |
No edit summary |
||
Line 13: | Line 13: | ||
Multipliers like bi-, tri-, etc. can be combined: 6-fold = tribi-, 8-fold = quadbi-, 9-fold = tritri-, 10-fold = quinbi-, 12-fold = quadtri-, 14-fold = sepbi-, 15-fold = quintri-, 16-fold = quadquad-, etc. Higher primes use their color word, but with the suffix '''-e''' for exponent: | Multipliers like bi-, tri-, etc. can be combined: 6-fold = tribi-, 8-fold = quadbi-, 9-fold = tritri-, 10-fold = quinbi-, 12-fold = quadtri-, 14-fold = sepbi-, 15-fold = quintri-, 16-fold = quadquad-, etc. Higher primes use their color word, but with the suffix '''-e''' for exponent: | ||
* 11-fold = '''le-''' ("leh"), 13-fold = '''the-''' (unvoiced "th"). 17 = '''se-''', 19 = '''ne-''', 23 = '''twenty-the-''', 29 = '''twenty-ne-''', etc. | * 11-fold = '''le-''' ("leh"), 13-fold = '''the-''' (unvoiced "th"). 17 = '''se-''', 19 = '''ne-''', 23 = '''twenty-the-''', 29 = '''twenty-ne-''', etc. | ||
Even with these abbreviations, temperament names can get quite long. To make them quicker to say, "bee" and "tree" are preferred over "bye" and "try". If the comma's ratio has N digits, the temperament name will usually have N, N-1, N+1 or occasionally N+2 syllables. | Even with these abbreviations, temperament names can get quite long. To make them quicker to say, and to make the words easier for non-Anglophones, "bee" and "tree" are preferred over "bye" and "try". If the comma's ratio has N digits, the temperament name will usually have N, N-1, N+1 or occasionally N+2 syllables. | ||
La also | La means large and also 11-all. The meaning will almost always be clear from context, however "this piece uses la notes" is ambiguous. To clarify, one should say either "large notes" (fifthward notes) or "ila notes" (11-limit notes). Likewise, sa also means 17-all, and "sa notes" should become either "small notes" or "isa notes". | ||
La is also the La note in solfege, and Sa is the tonic in saregam. The meaning will always be clear from context. Notes are never large or small. In fixed-do countries, the chord ALw (81/64 3rd) is "La lawa". | La is also the La note in solfege, and Sa is the tonic in saregam. The meaning will always be clear from context. Notes are never large or small. In fixed-do countries, the chord ALw (81/64 3rd) is "La lawa". | ||
Line 32: | Line 32: | ||
* [''Is this rule needed?''] Multiplier syllables fuse into one multiplier word: tribizogu = (tribi) x (zogu) = z<sup>6</sup>g<sup>6</sup>, not (tri) x (bizogu). | * [''Is this rule needed?''] Multiplier syllables fuse into one multiplier word: tribizogu = (tribi) x (zogu) = z<sup>6</sup>g<sup>6</sup>, not (tri) x (bizogu). | ||
* Avoid using the -a- delimiter if possible: z<sup>4</sup>gg = bizozogu, not quadzoagugu | * Avoid using the -a- delimiter if possible: z<sup>4</sup>gg = bizozogu, not quadzoagugu | ||
Therefore if the name starts with a multiplier word, and there's no -a- delimiter, that first multiplier word indicates the color GCD and thus the pergen's split(s). e.g. bizozogu = (P8, P5/2, /1). In the following list, an asterisk marks cases where this isn't possible, and the GCD is hidden. | Therefore if the name starts with a multiplier word, and there's no -a- delimiter, that first multiplier word indicates the '''color GCD''' and thus the [[Pergen|pergen's]] split(s). e.g. bizozogu = (P8, P5/2, /1). In the following list, an asterisk marks cases where this isn't possible, and the GCD is hidden. | ||
Gugu is generally preferred over bigu (zogugu not zobigu). But bizo is preferred over zozo sometimes to indicate the GCD, e.g. bizogugu not zozoquadgu. Likewise, tribigu is preferred over trigugu, as is | Gugu is generally preferred over bigu (zogugu not zobigu). But bizo is preferred over zozo sometimes to indicate the GCD, e.g. bizogugu not zozoquadgu. Likewise, tribigu is preferred over trigugu, as is quadbigu over quadgugu, etc. | ||
Names of 5-6 syllables or more are easier to read if broken up by hyphens and/or dashes and/or spaces. [''The exact method hasn't been decided yet.''] | |||
There follows examples of remote colors, for illustration. These examples don't all correspond to musically useful temperaments! | There follows examples of remote colors, for illustration. These examples don't all correspond to musically useful temperaments! | ||
Line 48: | Line 50: | ||
zzg<sup>3</sup> = zozotrigu<br /> | zzg<sup>3</sup> = zozotrigu<br /> | ||
z<sup>3</sup>g<sup>3</sup> = trizogu<br /> | z<sup>3</sup>g<sup>3</sup> = trizogu<br /> | ||
z<sup>3</sup>gg = | z<sup>3</sup>gg = trizo-agugu<br /> | ||
z<sup>3</sup>g = | z<sup>3</sup>g = trizo-agu | ||
g<sup>4</sup> = quadgu (Diminished)<br /> | g<sup>4</sup> = quadgu (Diminished)<br /> | ||
zg<sup>4</sup> = zoquadgu<br /> | zg<sup>4</sup> = zoquadgu<br /> | ||
zzg<sup>4</sup> = bizogugu<br /> | zzg<sup>4</sup> = bizogugu<br /> | ||
z<sup>3</sup>g<sup>4</sup> = | z<sup>3</sup>g<sup>4</sup> = trizo-aquadgu<br /> | ||
z<sup>4</sup>g<sup>4</sup> = quadzogu<br /> | z<sup>4</sup>g<sup>4</sup> = quadzogu<br /> | ||
z<sup>4</sup>g<sup>3</sup> = | z<sup>4</sup>g<sup>3</sup> = quadzo-atrigu<br /> | ||
z<sup>4</sup>gg = bizozogu (Breedsmic)<br /> | z<sup>4</sup>gg = bizozogu (Breedsmic)<br /> | ||
z<sup>4</sup>g = | z<sup>4</sup>g = quadzo-agu | ||
g<sup>5</sup> = quingu<br /> | g<sup>5</sup> = quingu<br /> | ||
zg<sup>5</sup> = zoquingu<br /> | zg<sup>5</sup> = zoquingu<br /> | ||
zzg<sup>5</sup> = zozoquingu<br /> | zzg<sup>5</sup> = zozoquingu<br /> | ||
z<sup>3</sup>g<sup>5</sup> = | z<sup>3</sup>g<sup>5</sup> = trizo-aquingu<br /> | ||
z<sup>4</sup>g<sup>5</sup> = | z<sup>4</sup>g<sup>5</sup> = quadzo-aquingu<br /> | ||
z<sup>5</sup>g<sup>5</sup> = quinzogu<br /> | z<sup>5</sup>g<sup>5</sup> = quinzogu<br /> | ||
z<sup>5</sup>g<sup>4</sup> = | z<sup>5</sup>g<sup>4</sup> = quinzo-aquadgu<br /> | ||
z<sup>5</sup>g<sup>3</sup> = | z<sup>5</sup>g<sup>3</sup> = quinzo-atrigu<br /> | ||
z<sup>5</sup>gg = | z<sup>5</sup>gg = quinzo-agugu<br /> | ||
z<sup>5</sup>g = | z<sup>5</sup>g = quinzo-agu | ||
g<sup>6</sup> = tribigu<br /> | g<sup>6</sup> = tribigu<br /> | ||
Line 76: | Line 78: | ||
z<sup>3</sup>g<sup>6</sup> = trizogugu<br /> | z<sup>3</sup>g<sup>6</sup> = trizogugu<br /> | ||
z<sup>4</sup>g<sup>6</sup> = bizozotrigu<br /> | z<sup>4</sup>g<sup>6</sup> = bizozotrigu<br /> | ||
z<sup>5</sup>g<sup>6</sup> = | z<sup>5</sup>g<sup>6</sup> = quinzo-atribigu<br /> | ||
z<sup>6</sup>g<sup>6</sup> = tribizogu<br /> | z<sup>6</sup>g<sup>6</sup> = tribizogu<br /> | ||
z<sup>6</sup>g<sup>5</sup> = | z<sup>6</sup>g<sup>5</sup> = tribizo-aquingu<br /> | ||
z<sup>6</sup>g<sup>4</sup> = | z<sup>6</sup>g<sup>4</sup> = tribizo-aquadgu*<br /> | ||
z<sup>6</sup>g<sup>3</sup> = trizozogu<br /> | z<sup>6</sup>g<sup>3</sup> = trizozogu<br /> | ||
z<sup>6</sup>gg = | z<sup>6</sup>gg = tribizo-agugu*<br /> | ||
z<sup>6</sup>g = | z<sup>6</sup>g = tribizo-agu | ||
g<sup>7</sup> = sepgu<br /> | g<sup>7</sup> = sepgu<br /> | ||
zg<sup>7</sup> = zosepgu<br /> | zg<sup>7</sup> = zosepgu<br /> | ||
zzg<sup>7</sup> = zozosepgu<br /> | zzg<sup>7</sup> = zozosepgu<br /> | ||
z<sup>3</sup>g<sup>7</sup> = | z<sup>3</sup>g<sup>7</sup> = trizo-asepgu<br /> | ||
z<sup>4</sup>g<sup>7</sup> = | z<sup>4</sup>g<sup>7</sup> = quadzo-asepgu<br /> | ||
z<sup>5</sup>g<sup>7</sup> = | z<sup>5</sup>g<sup>7</sup> = quinzo-asepgu<br /> | ||
z<sup>6</sup>g<sup>7</sup> = | z<sup>6</sup>g<sup>7</sup> = tribizo-asepgu<br /> | ||
z<sup>7</sup>g<sup>7</sup> = sepzogu<br /> | z<sup>7</sup>g<sup>7</sup> = sepzogu<br /> | ||
z<sup>7</sup>g<sup>6</sup> = | z<sup>7</sup>g<sup>6</sup> = sepzo-atribigu<br /> | ||
z<sup>7</sup>g<sup>5</sup> = | z<sup>7</sup>g<sup>5</sup> = sepzo-aquingu<br /> | ||
z<sup>7</sup>g<sup>4</sup> = | z<sup>7</sup>g<sup>4</sup> = sepzo-aquadgu<br /> | ||
z<sup>7</sup>g<sup>3</sup> = | z<sup>7</sup>g<sup>3</sup> = sepzo-atrigu<br /> | ||
z<sup>7</sup>gg = | z<sup>7</sup>gg = sepzo-agugu<br /> | ||
z<sup>7</sup>g = | z<sup>7</sup>g = sepzo-agu | ||
g<sup>8</sup> = | g<sup>8</sup> = quadbigu<br /> | ||
zg<sup>8</sup> = | zg<sup>8</sup> = zoquadbigu<br /> | ||
zzg<sup>8</sup> = bizoquadgu<br /> | zzg<sup>8</sup> = bizoquadgu<br /> | ||
z<sup>3</sup>g<sup>8</sup> = | z<sup>3</sup>g<sup>8</sup> = trizo-aquadbigu<br /> | ||
z<sup>4</sup>g<sup>8</sup> = quadzogugu<br /> | z<sup>4</sup>g<sup>8</sup> = quadzogugu<br /> | ||
z<sup>5</sup>g<sup>8</sup> = | z<sup>5</sup>g<sup>8</sup> = quinzo-aquadbigu<br /> | ||
z<sup>6</sup>g<sup>8</sup> = | z<sup>6</sup>g<sup>8</sup> = tribizo-aquadbigu* <br /> | ||
z<sup>7</sup>g<sup>8</sup> = | z<sup>7</sup>g<sup>8</sup> = sepzo-aquadbigu<br /> | ||
z<sup>8</sup>g<sup>8</sup> = | z<sup>8</sup>g<sup>8</sup> = quadbizogu<br /> | ||
z<sup>8</sup>g<sup>7</sup> = | z<sup>8</sup>g<sup>7</sup> = quadbizo-asepgu<br /> | ||
z<sup>8</sup>g<sup>6</sup> = | z<sup>8</sup>g<sup>6</sup> = quadbizo-atribigu*<br /> | ||
z<sup>8</sup>g<sup>5</sup> = | z<sup>8</sup>g<sup>5</sup> = quadbizo-aquingu<br /> | ||
z<sup>8</sup>g<sup>4</sup> = quadzozogu<br /> | z<sup>8</sup>g<sup>4</sup> = quadzozogu<br /> | ||
z<sup>8</sup>g<sup>3</sup> = | z<sup>8</sup>g<sup>3</sup> = quadbizo-atrigu<br /> | ||
z<sup>8</sup>gg = | z<sup>8</sup>gg = quadbizo-agugu*<br /> | ||
z<sup>8</sup>g = | z<sup>8</sup>g = quadbizo-agu | ||
g<sup>9</sup> = tritrigu<br /> | g<sup>9</sup> = tritrigu<br /> | ||
zg<sup>9</sup> = zotritrigu<br /> | zg<sup>9</sup> = zotritrigu<br /> | ||
zzg<sup>9</sup> = | zzg<sup>9</sup> = zozo-tritrigu<br /> | ||
z<sup>3</sup>g<sup>9</sup> = trizotrigu<br /> | z<sup>3</sup>g<sup>9</sup> = trizotrigu<br /> | ||
z<sup>4</sup>g<sup>9</sup> = | z<sup>4</sup>g<sup>9</sup> = quadzo-atritrigu<br /> | ||
z<sup>5</sup>g<sup>9</sup> = | z<sup>5</sup>g<sup>9</sup> = quinzo-atritrigu<br /> | ||
z<sup>6</sup>g<sup>9</sup> = trizozotrigu<br /> | z<sup>6</sup>g<sup>9</sup> = trizozotrigu<br /> | ||
z<sup>7</sup>g<sup>9</sup> = | z<sup>7</sup>g<sup>9</sup> = sepzo-atritrigu<br /> | ||
z<sup>8</sup>g<sup>9</sup> = | z<sup>8</sup>g<sup>9</sup> = quadbizo-atritrigu<br /> | ||
z<sup>9</sup>g<sup>9</sup> = tritrizogu<br /> | z<sup>9</sup>g<sup>9</sup> = tritrizogu<br /> | ||
z<sup>9</sup>g<sup>8</sup> = | z<sup>9</sup>g<sup>8</sup> = tritrizo-aquadbigu<br /> | ||
z<sup>9</sup>g<sup>7</sup> = | z<sup>9</sup>g<sup>7</sup> = tritrizo-asepgu<br /> | ||
z<sup>9</sup>g<sup>6</sup> = | z<sup>9</sup>g<sup>6</sup> = tritrizo-atribigu*<br /> | ||
z<sup>9</sup>g<sup>5</sup> = | z<sup>9</sup>g<sup>5</sup> = tritrizo-aquingu<br /> | ||
z<sup>9</sup>g<sup>4</sup> = | z<sup>9</sup>g<sup>4</sup> = tritrizo-aquadgu<br /> | ||
z<sup>9</sup>g<sup>3</sup> = | z<sup>9</sup>g<sup>3</sup> = tritrizo-atrigu*<br /> | ||
z<sup>9</sup>gg = | z<sup>9</sup>gg = tritrizo-agugu<br /> | ||
z<sup>9</sup>g = | z<sup>9</sup>g = tritrizo-agu | ||
''<u>Possible solution to the GCD problem</u>:'' | ''<u>Possible solution to the GCD problem</u>:'' | ||
Line 139: | Line 141: | ||
''bi- + -a- = double-all --> affects the whole name'' | ''bi- + -a- = double-all --> affects the whole name'' | ||
z<sup>6</sup>g<sup>4</sup> = | z<sup>6</sup>g<sup>4</sup> = tribizo-aquadgu* = biatrizo-agugu?<br /> | ||
z<sup>6</sup>gg = | z<sup>6</sup>gg = tribizo-agugu* = biatrizo-agu?<br /> | ||
z<sup>6</sup>g<sup>8</sup> = | z<sup>6</sup>g<sup>8</sup> = tribizo-aquadbigu* = biatrizo-aquadgu?<br /> | ||
z<sup>8</sup>g<sup>6</sup> = | z<sup>8</sup>g<sup>6</sup> = quadbizo-atribigu* = biaquadzo-atrigu?<br /> | ||
z<sup>8</sup>gg = | z<sup>8</sup>gg = quadbizo-agugu* = biaquadzo-agu?<br /> | ||
z<sup>9</sup>g<sup>6</sup> = | z<sup>9</sup>g<sup>6</sup> = tritrizo-atribigu* = triatrizo-agugu?<br /> | ||
z<sup>9</sup>g<sup>3</sup> = | z<sup>9</sup>g<sup>3</sup> = tritrizo-atrigu* = triatrizo-agu? | ||
== Tricolored examples == | == Tricolored examples == | ||
Line 157: | Line 159: | ||
1oozg = lolozogu<br /> | 1oozg = lolozogu<br /> | ||
1oogg = bilogu<br /> | |||
1oozgg = lolozogugu<br /> | 1oozgg = lolozogugu<br /> | ||
1oozzzgg = bilozogu<br /> | 1oozzzgg = bilozogu<br /> | ||
1oozzg = | 1oozzg = bilozo-agu | ||
1oozg<sup>3</sup> = lolozotrigu<br /> | 1oozg<sup>3</sup> = lolozotrigu<br /> | ||
1oozzg<sup>3</sup> = | 1oozzg<sup>3</sup> = bilozo-atrigu<br /> | ||
1ooz<sup>3</sup>g<sup>3</sup> = | 1ooz<sup>3</sup>g<sup>3</sup> = lolo-trizogu<br /> | ||
1ooz<sup>3</sup>gg = | 1ooz<sup>3</sup>gg = lolotrizo-agugu<br /> | ||
1ooz<sup>3</sup>g = | 1ooz<sup>3</sup>g = lolotrizo-agu | ||
1o<sup>3</sup>zg = | 1o<sup>3</sup>zg = trilo-azogu<br /> | ||
1o<sup>3</sup>zgg = | 1o<sup>3</sup>zgg = trilo-azogugu<br /> | ||
1o<sup>3</sup>zzgg = | 1o<sup>3</sup>zzgg = trilo-abizogu<br /> | ||
1o<sup>3</sup>zzg = | 1o<sup>3</sup>zzg = trilo-azozogu | ||
1o<sup>3</sup>zg<sup>3</sup> = | 1o<sup>3</sup>zg<sup>3</sup> = trilo-azotrigu<br /> | ||
1o<sup>3</sup>zzg<sup>3</sup> = | 1o<sup>3</sup>zzg<sup>3</sup> = trilo-azozotrigu<br /> | ||
1o<sup>3</sup>z<sup>3</sup>g<sup>3</sup> = trilozogu<br /> | 1o<sup>3</sup>z<sup>3</sup>g<sup>3</sup> = trilozogu<br /> | ||
1o<sup>3</sup>z<sup>3</sup>gg = | 1o<sup>3</sup>z<sup>3</sup>gg = trilozo-agugu<br /> | ||
1o<sup>3</sup>z<sup>3</sup>g = | 1o<sup>3</sup>z<sup>3</sup>g = trilozo-agu | ||
1o<sup>3</sup>z<sup>6</sup>gg = trilozozo-agugu<br /> | |||
1ooz<sup>6</sup>g<sup>3</sup> = lolo-trizozogu, not bilotrizo-atrigu | |||
== Quadricolored examples == | == Quadricolored examples == | ||
Line 182: | Line 188: | ||
3o1uzg = tholuzogu<br /> | 3o1uzg = tholuzogu<br /> | ||
3o1uzgg = | 3o1uzgg = tholu-zogugu<br /> | ||
3o1uzzgg = | 3o1uzzgg = tholu-bizogu<br /> | ||
3o1uuzzg = | 3o1uuzzg = thobiluzo-agu<br /> | ||
etc. | etc. | ||
3oo1uzg = | 3oo1uzg = thotholu-zogu<br /> | ||
3oo1uzgg = | 3oo1uzgg = thotholu-zogugu<br /> | ||
3oo1uzzg = | 3oo1uzzg = thotholu-zozogu<br /> | ||
3oo1uzzgg = | 3oo1uzzgg = thotholu-bizogu<br /> | ||
3oo1uuzg = | 3oo1uuzg = bitholu-azogu<br /> | ||
3oo1uuzgg = | 3oo1uuzgg = bitholu-azogugu<br /> | ||
3oo1uuzzg = | 3oo1uuzzg = bitholuzo-agu<br /> | ||
3oo1uuzzgg = bitholuzogu<br /> | 3oo1uuzzgg = bitholuzogu<br /> | ||
etc. | etc. |