Logarithmic approximants: Difference between revisions
Wikispaces>FREEZE No edit summary |
CritDeathX (talk | contribs) Added Yahoo links |
||
Line 236: | Line 236: | ||
==<span style="font-family: Arial,Helvetica,sans-serif;">Definition</span>== | ==<span style="font-family: Arial,Helvetica,sans-serif;">Definition</span>== | ||
The quadratic approximant ''<span style="font-family: Georgia,serif; font-size: 110%;">q</span>'' of an interval ''<span style="font-family: Georgia,serif; font-size: 110%;">J</span>'' with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;">''r'' = ''n''''/d''</span> is | The quadratic approximant ''<span style="font-family: Georgia,serif; font-size: 110%;">q</span>'' of an interval ''<span style="font-family: Georgia,serif; font-size: 110%;">J</span>'' with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;">''r'' = ''n'<nowiki/>'''/d'''''</span>''' is''' | ||
<math>\qquad q(r) = \tfrac{1}{2} (r^{1/2} – r^{-1/2}) \\ | <math>\qquad q(r) = \tfrac{1}{2} (r^{1/2} – r^{-1/2}) \\ | ||
Line 362: | Line 362: | ||
The most interesting approximate interval ratios derivable from quadratic approximants are irrational. | The most interesting approximate interval ratios derivable from quadratic approximants are irrational. | ||
==<span style="font-family: Arial,Helvetica,sans-serif;">Relative sizes of intervals between 3 frequencies in arithmetic progression</span>== | ==<span style="font-family: Arial,Helvetica,sans-serif;">Relative sizes of intervals between 3 frequencies in arithmetic progression</span>== | ||
Line 393: | Line 391: | ||
The ratio of the large tone, <span style="font-family: Georgia,serif; font-size: 110%;">''T'' = <u>9/8</u></span>, to the small tone, <span style="font-family: Georgia,serif; font-size: 110%;">''t'' = <u>10/9</u></span>, as estimated by their quadratic approximants (1/12√2 and 1/6√10) is √5/2, which is the frequency ratio of the mean tone. | The ratio of the large tone, <span style="font-family: Georgia,serif; font-size: 110%;">''T'' = <u>9/8</u></span>, to the small tone, <span style="font-family: Georgia,serif; font-size: 110%;">''t'' = <u>10/9</u></span>, as estimated by their quadratic approximants (1/12√2 and 1/6√10) is √5/2, which is the frequency ratio of the mean tone. | ||
<span style="font-family: Georgia,serif; font-size: 110%;">''T''''/t'' = 203.910/182.404 = 1.11790,</span> | <span style="font-family: Georgia,serif; font-size: 110%;">''T'<nowiki/>'''/t'''''<nowiki/>''' = 203.910/182.404 = 1.11790,'''</span> | ||
<span style="font-family: Georgia,serif; font-size: 110%;">√5/2 = 1.11803.</span> | <span style="font-family: Georgia,serif; font-size: 110%;">√5/2 = 1.11803.</span> | ||
Line 536: | Line 534: | ||
If these 7-limit intervals are considered to be tempered to their 3-limit counterparts argent is an example of hemifamity temperament. Hemifamity (<u>3120/3103</u>) is the bimodular comma formed from <u>10/7</u> and <u>9/8</u> | If these 7-limit intervals are considered to be tempered to their 3-limit counterparts argent is an example of hemifamity temperament. Hemifamity (<u>3120/3103</u>) is the bimodular comma formed from <u>10/7</u> and <u>9/8</u> | ||
By the [http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem Gelfond-Schneider theorem ] the frequency ratios of all argent intervals (<span style="font-family: Georgia,serif; font-size: 110%;">''r'' = 2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2''a''+''b''</span>, where''<span style="font-family: Georgia,serif; font-size: 110%;"> a</span>'' and ''<span style="font-family: Georgia,serif; font-size: 110%;">b</span>'' are integers) are transcendental, with the exception of octave multiples (<span style="font-family: Georgia,serif; font-size: 110%;">''a'' = 0</span>). The frequency ratio of the tempered perfect eleventh (<span style="font-family: Georgia,serif; font-size: 110%;"><u>8/3</u> = <u>2.6666...</u></span>) is the [http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_constant Gelfond-Schneider constant ]or Hilbert number, <span style="font-family: Georgia,serif; font-size: 110%;">2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2</span><span style="font-family: Georgia,serif; font-size: 110%;"> = 2.665144</span>... | By the [http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem Gelfond-Schneider theorem] the frequency ratios of all argent intervals (<span style="font-family: Georgia,serif; font-size: 110%;">''r'' = 2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2''a''+''b''</span>, where''<span style="font-family: Georgia,serif; font-size: 110%;"> a</span>'' and ''<span style="font-family: Georgia,serif; font-size: 110%;">b</span>'' are integers) are transcendental, with the exception of octave multiples (<span style="font-family: Georgia,serif; font-size: 110%;">''a'' = 0</span>). The frequency ratio of the tempered perfect eleventh (<span style="font-family: Georgia,serif; font-size: 110%;"><u>8/3</u> = <u>2.6666...</u></span>) is the [http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_constant Gelfond-Schneider constant] or Hilbert number, <span style="font-family: Georgia,serif; font-size: 110%;">2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2</span><span style="font-family: Georgia,serif; font-size: 110%;"> = 2.665144</span>... | ||
==Golden temperaments== | ==Golden temperaments== | ||
Line 674: | Line 672: | ||
<span style="color: #333333;">As [[Gene_Ward_Smith|Gene Ward Smith]] has noted, the </span>5-limit comma <span style="color: #333333;">|-433 -137 280> (‘''selenia''’) is remarkably small at just 0.004764 cents. The minute size of this comma can be explained using qu</span>adratic approximants. | <span style="color: #333333;">As [[Gene_Ward_Smith|Gene Ward Smith]] has noted, the </span>5-limit comma <span style="color: #333333;">|-433 -137 280> (‘''selenia''’) is remarkably small at just 0.004764 cents. The minute size of this comma can be explained using qu</span>adratic approximants. | ||
It can be shown, using a suitable [[Comma-based_lattices|comma-based lattice]], that every comma tempered out by 34edo can be expressed as an integer linear combination of the [[Gammic_node|//gammic// comma ]]|-29 -11 20> (4.769 cents) and the ''semisuper'' comma (AKA ''[[vishnuzma|vishnuzma]]'') |23 6 -14> (3.338 cents). In particular, | It can be shown, using a suitable [[Comma-based_lattices|comma-based lattice]], that every comma tempered out by 34edo can be expressed as an integer linear combination of the [[Gammic_node|//gammic// comma]] |-29 -11 20> (4.769 cents) and the ''semisuper'' comma (AKA ''[[vishnuzma|vishnuzma]]'') |23 6 -14> (3.338 cents). In particular, | ||
<span style="color: #333333;"><span style="color: #ffffff; font-family: Arial,Helvetica,sans-serif; font-size: 110%;">###</span>''selenia'' = 7 ''gammic'' – 10 ''semisuper''</span> | <span style="color: #333333;"><span style="color: #ffffff; font-family: Arial,Helvetica,sans-serif; font-size: 110%;">###</span>''selenia'' = 7 ''gammic'' – 10 ''semisuper''</span> | ||
<span style="color: #333333;">So to prove that ''selenia'' is small we must show that ''gammic''''/semisuper'' ≈ 10/7.</span> | <span style="color: #333333;">So to prove that ''selenia'' is small we must show that ''gammic'<nowiki/>'''/semisuper'''''<nowiki/>''' ≈ 10/7.'''</span> | ||
<span style="color: #333333;">''Gammic'' and ''semisuper'' are both bimodular commas:</span> | <span style="color: #333333;">''Gammic'' and ''semisuper'' are both bimodular commas:</span> | ||
Line 762: | Line 760: | ||
This article is based on original research by [[Martin_Gough|Martin Gough]]. See [[:File:Bimod_Approx_2014-6-8.pdf|this paper]] for a fuller account of bimodular approximants. | This article is based on original research by [[Martin_Gough|Martin Gough]]. See [[:File:Bimod_Approx_2014-6-8.pdf|this paper]] for a fuller account of bimodular approximants. | ||
The tuning referred to here as argent temperament appears to have been discovered 'about 1950' by Erv Wilson, who named it [http://anaphoria.com/meruthree.pdf 2-zig/2-zag]'. It was later rediscovered independently by [[Graham_Breed|Graham Breed]] and Paul Hahn, who described it in posts (#12599, #12670) to the Yahoo tuning list on 10 and 12 August 2000. | The tuning referred to here as argent temperament appears to have been discovered 'about 1950' by Erv Wilson, who named it [http://anaphoria.com/meruthree.pdf 2-zig/2-zag]'. It was later rediscovered independently by [[Graham_Breed|Graham Breed]] and Paul Hahn, who described it in posts ([https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_12592.html#12599 #12599], [https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_12637.html#12670 #12670]) to the Yahoo tuning list on 10 and 12 August 2000. | ||
Thanks to [[Gene_Ward_Smith|Gene Ward Smith]] for the Gelfond-Schneider result. | Thanks to [[Gene_Ward_Smith|Gene Ward Smith]] for the Gelfond-Schneider result. |