33edo: Difference between revisions

BudjarnLambeth (talk | contribs)
m Structural properties: + ''See regular temperament for more about what all this means and how to use it.''
BudjarnLambeth (talk | contribs)
Line 15: Line 15:
Instead of the flat 19-step fifth you may use the 20-step sharp fifth, over 25{{c}} sharp. Two of these lead to a 9/8 of 7\33, which is about 22/19 in size and may be counted as a small third. Between the flat 5\33 version of 9/8 and the sharp 7\33 version there is, of course, a {{nowrap|6\33 {{=}} 2\[[11edo|11]]}} interval of 218{{c}}. Together, these add up to {{nowrap|6\33 + 5\33 {{=}} 11\33 {{=}} 1\3}}, or 400{{c}}, the same major third as 12edo. We also have both a 327{{c}} minor third ({{nowrap|9\33 {{=}} 6\22 {{=}} 3\11}}), the same as that of [[22edo]], and a flatter 8\33 third of 291{{c}}, which if you like could also be called a flat 19th harmonic, but much more accurately a 13/11 sharp by 1.7{{c}} (if you use the patent val it is an extremely inaccurate 6/5). Another talent it has is that 7/5 is tuned quite accurately by 16\33, and we may put two 8\33 versions of 13/11 together to produce the [[cuthbert triad]]. The 8\33 generator, with MOS of size 5, 9, and 13, gives plenty of scope for these, as well as the 11th, 13th, and 19th harmonics (taking the generator as a 19/16) which are relatively well in tune.
Instead of the flat 19-step fifth you may use the 20-step sharp fifth, over 25{{c}} sharp. Two of these lead to a 9/8 of 7\33, which is about 22/19 in size and may be counted as a small third. Between the flat 5\33 version of 9/8 and the sharp 7\33 version there is, of course, a {{nowrap|6\33 {{=}} 2\[[11edo|11]]}} interval of 218{{c}}. Together, these add up to {{nowrap|6\33 + 5\33 {{=}} 11\33 {{=}} 1\3}}, or 400{{c}}, the same major third as 12edo. We also have both a 327{{c}} minor third ({{nowrap|9\33 {{=}} 6\22 {{=}} 3\11}}), the same as that of [[22edo]], and a flatter 8\33 third of 291{{c}}, which if you like could also be called a flat 19th harmonic, but much more accurately a 13/11 sharp by 1.7{{c}} (if you use the patent val it is an extremely inaccurate 6/5). Another talent it has is that 7/5 is tuned quite accurately by 16\33, and we may put two 8\33 versions of 13/11 together to produce the [[cuthbert triad]]. The 8\33 generator, with MOS of size 5, 9, and 13, gives plenty of scope for these, as well as the 11th, 13th, and 19th harmonics (taking the generator as a 19/16) which are relatively well in tune.


33edo contains an accurate approximation of the Bohlen-Pierce scale with 4\33 near 1\[[13edt]].
33edo contains an accurate approximation of the [[Bohlen–Pierce scale]] with 4\33 near 1\[[13edt]].


Other notable 33edo scales are [[diasem]] with {{nowrap|L:m:s {{=}} 5:3:1}} and [[5L 4s]] with {{nowrap|L:s {{=}} 5:2}}. This step ratio for 5L 4s is great for its semitone size of 72.7{{c}}.
Other notable 33edo scales are [[diasem]] with {{nowrap|L:m:s {{=}} 5:3:1}} and [[5L 4s]] with {{nowrap|L:s {{=}} 5:2}}. This step ratio for 5L 4s is great for its semitone size of 72.7{{c}}.