The Riemann zeta function and tuning/Vector's derivation: Difference between revisions

No edit summary
No edit summary
Line 19: Line 19:
so that cos(x) can be rewritten as Re(e<sup>ix</sup>).
so that cos(x) can be rewritten as Re(e<sup>ix</sup>).


<nowiki>$$ \mu_{d}\left(x\right)=\sum_{k=1}^{infty}\frac{\operatorname{Re}\left(e^{i\left(\ln\left(k\right)x\right)}\right)}{k^{2}} $$</nowiki>
<nowiki>$$ \mu_{d}\left(x\right)=\sum_{k=1}^{\infty}\frac{\operatorname{Re}\left(e^{i\left(\ln\left(k\right)x\right)}\right)}{k^{2}} $$</nowiki>


For now, we will ignore the Re() function as a sum of real parts is the same as the real part of the sum (by the rules of complex addition), and the denominator is just a real number.
For now, we will ignore the Re() function as a sum of real parts is the same as the real part of the sum (by the rules of complex addition), and the denominator is just a real number.


<nowiki>$$ \mu_{d}\left(x\right)=\sum_{k=1}^{infty}\frac{e^{i\left(\ln\left(k\right)x\right)}}{k^{2}} $$</nowiki>
<nowiki>$$ \mu_{d}\left(x\right)=\sum_{k=1}^{\infty}\frac{e^{i\left(\ln\left(k\right)x\right)}}{k^{2}} $$</nowiki>