Zetave: Difference between revisions

No edit summary
No edit summary
Line 1: Line 1:
{{Mathematical interest}}{{Infobox interval|ratio=e^{\tau}|cents=10877.6643|Ratio=e^{\tau}|Cents=10877.6643|Name=zetave}}
{{Mathematical interest}}{{Infobox interval|ratio=e^{\tau}|cents=10877.6643|Ratio=e^{\tau}|Cents=10877.6643|Name=zetave}}


The '''zetave''', e<sup>𝜏</sup> or ~535.49/1 is the interval which is equally divided when the [[zeta]] function is '''not''' scaled so that Im(s) corresponds to edos. In other words, imaginary values on the [[The Riemann zeta function and tuning|Riemann zeta function]] correspond to equal divisions of the zetave (EDZ). 12edo is about 108.776643404edz, and an EDO can be converted to an EDZ by multiplying the number by <sup>𝜏</sup>/<sub>ln(2)</sub> (and in general, an equal division of an interval ''x'' can be expressed as an EDZ via <sup>𝜏</sup>/<sub>ln(x)</sub>. (For an equal tuning expressed as an [[EDN|equal division of the natave]] (e), this reduces to a multiplication by 𝜏; in other words, the zetave is the result of stacking 𝜏 nataves. The appearance of the zetave in the zeta function's usage in tuning suggests that it has a natural relation to [[Equal-step tuning|equal-step tunings]].
The '''zetave''', e<sup>𝜏</sup> or ~535.49/1 is the interval which is equally divided when the [[zeta]] function is '''not''' scaled so that Im(s) corresponds to edos. In other words, imaginary values on the [[The Riemann zeta function and tuning|Riemann zeta function]] correspond to equal divisions of the zetave (EDZ). 12edo is about 108.776643404edz, and an EDO can be converted to an EDZ by multiplying the number by <sup>𝜏</sup>/<sub>ln(2)</sub> (and in general, an equal division of an interval ''x'' can be expressed as an EDZ via <sup>𝜏</sup>/<sub>ln(x)</sub>. (For an equal tuning expressed as an [[EDN|equal division of the natave]] (e), this reduces to a multiplication by 𝜏; in other words, the zetave is the result of stacking 𝜏 [[Natave|nataves]]. The appearance of the zetave in the zeta function's usage in tuning suggests that it has a natural relation to [[Equal-step tuning|equal-step tunings]].


== Trivia ==
== Trivia ==


* The zetave, as a ratio, can be expressed as an i-th root of 1; this is, in fact, a statement of Euler's identity that e<sup>i𝜏</sup> = 1.
* The zetave, as a ratio, can be expressed as an i-th root of 1; this is, in fact, a statement of Euler's identity that e<sup>i𝜏</sup> = 1.