Height: Difference between revisions

Wikispaces>mbattaglia1
**Imported revision 447781960 - Original comment: **
Wikispaces>mbattaglia1
**Imported revision 447782290 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2013-08-31 06:49:09 UTC</tt>.<br>
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2013-08-31 06:53:49 UTC</tt>.<br>
: The original revision id was <tt>447781960</tt>.<br>
: The original revision id was <tt>447782290</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 72: Line 72:
2^{-v_2 \left( {d} \right)} d} \right)
2^{-v_2 \left( {d} \right)} d} \right)
[[math]] || [[math]]
[[math]] || [[math]]
2^{\large{\left(\frac{1}{2}\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(2) - v_2(q) \mid \right)}}
2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(2) - v_2(q) \mid \right)\right)}}
[[math]] || [[math]]
[[math]] || [[math]]
\|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |
\|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |
Line 80: Line 80:
Some useful identities:
Some useful identities:
[[math]]
[[math]]
n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)
n = 2^{\large{\frac{1}{2}\|q\|_{T1} + \log_2(q)}}
[[math]]
[[math]]
[[math]]
[[math]]
d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)
d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}}
[[math]]
[[math]]
[[math]]
[[math]]
n d = 2^{T1 \left( {q} \right)}
n d = 2^{\|q\|_{T1}}
[[math]]
[[math]]


Line 237: Line 237:
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:17:
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:17:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
2^{\large{\left(\frac{1}{2}\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(2) - v_2(q) \mid \right)}}&amp;lt;br/&amp;gt;[[math]]
2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(2) - v_2(q) \mid \right)\right)}}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;2^{\large{\left(\frac{1}{2}\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(2) - v_2(q) \mid \right)}}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:17 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(2) - v_2(q) \mid \right)\right)}}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:17 --&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:18:
         &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:18:
Line 253: Line 253:
&lt;!-- ws:start:WikiTextMathRule:19:
&lt;!-- ws:start:WikiTextMathRule:19:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)&amp;lt;br/&amp;gt;[[math]]
n = 2^{\large{\frac{1}{2}\|q\|_{T1} + \log_2(q)}}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:19 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;n = 2^{\large{\frac{1}{2}\|q\|_{T1} + \log_2(q)}}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:19 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:20:
&lt;!-- ws:start:WikiTextMathRule:20:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)&amp;lt;br/&amp;gt;[[math]]
d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:20 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:20 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:21:
&lt;!-- ws:start:WikiTextMathRule:21:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
n d = 2^{T1 \left( {q} \right)}&amp;lt;br/&amp;gt;[[math]]
n d = 2^{\|q\|_{T1}}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;n d = 2^{T1 \left( {q} \right)}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:21 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;n d = 2^{\|q\|_{T1}}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:21 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Height functions can also be put on the points of &lt;a class="wiki_link_ext" href="http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html" rel="nofollow"&gt;projective varieties&lt;/a&gt;. Since &lt;a class="wiki_link" href="/Abstract%20regular%20temperament"&gt;abstract regular temperaments&lt;/a&gt; can be identified with rational points on &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Grassmannian" rel="nofollow"&gt;Grassmann varieties&lt;/a&gt;, complexity measures of regular temperaments are also height functions.&lt;/body&gt;&lt;/html&gt;</pre></div>
Height functions can also be put on the points of &lt;a class="wiki_link_ext" href="http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html" rel="nofollow"&gt;projective varieties&lt;/a&gt;. Since &lt;a class="wiki_link" href="/Abstract%20regular%20temperament"&gt;abstract regular temperaments&lt;/a&gt; can be identified with rational points on &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Grassmannian" rel="nofollow"&gt;Grassmann varieties&lt;/a&gt;, complexity measures of regular temperaments are also height functions.&lt;/body&gt;&lt;/html&gt;</pre></div>