46edo: Difference between revisions

Godtone (talk | contribs)
BudjarnLambeth (talk | contribs)
Theory: Remove the who tag (that I think I added initially) since the consensus on this Discord is attribution is not needed for this claim
Line 9: Line 9:


== Theory ==
== Theory ==
In the opinion of some{{Who}}, 46edo is the first equal division to deal adequately with the [[13-limit]], though others award that distinction to [[41edo]] or [[53edo]]. In fact, while 41 is a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak and zeta integral edo]] but not a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta gap edo]], 46 is zeta gap but not zeta peak or zeta integral, and 53 is a [[strict zeta edo]]. (The sum of 41edo and 46edo, [[87edo]], does better than all three in the 13-limit at the expense of a high note count.) Like 41, 46 is distinctly [[consistent]] in the [[9-odd-limit]], and it is consistent to the [[13-odd-limit]] or the no-15 no-19 [[23-odd-limit]]. 46edo's fifth is slightly sharp of just, which some people (e.g. [[Margo Schulter]]) prefer, sometimes strongly, over both the [[3/2|just fifth]] and fifths of temperaments with flat fifths, such as meantone. Many say that sharp fifths give a characteristic bright sound to 5-limit triads, and consider the sound of meantone triads to be more mellow in comparison.
In the opinion of some, 46edo is the first equal division to deal adequately with the [[13-limit]], though others award that distinction to [[41edo]] or [[53edo]]. In fact, while 41 is a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak and zeta integral edo]] but not a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta gap edo]], 46 is zeta gap but not zeta peak or zeta integral, and 53 is a [[strict zeta edo]]. (The sum of 41edo and 46edo, [[87edo]], does better than all three in the 13-limit at the expense of a high note count.) Like 41, 46 is distinctly [[consistent]] in the [[9-odd-limit]], and it is consistent to the [[13-odd-limit]] or the no-15 no-19 [[23-odd-limit]]. 46edo's fifth is slightly sharp of just, which some people (e.g. [[Margo Schulter]]) prefer, sometimes strongly, over both the [[3/2|just fifth]] and fifths of temperaments with flat fifths, such as meantone. Many say that sharp fifths give a characteristic bright sound to 5-limit triads, and consider the sound of meantone triads to be more mellow in comparison.


[[Rank-2 temperament]]s it [[support]]s include [[sensi]], [[valentine]], [[shrutar]], [[rodan]], [[leapday]] and [[unidec]]. The [[11-odd-limit]] [[minimax tuning]] for valentine, (11/7)<sup>1/10</sup>, is only 0.01 cents flat of 3\46 octaves.  
[[Rank-2 temperament]]s it [[support]]s include [[sensi]], [[valentine]], [[shrutar]], [[rodan]], [[leapday]] and [[unidec]]. The [[11-odd-limit]] [[minimax tuning]] for valentine, (11/7)<sup>1/10</sup>, is only 0.01 cents flat of 3\46 octaves.