1848edo: Difference between revisions

Eliora (talk | contribs)
Eliora (talk | contribs)
Theory: you don't need all of 19-limit for the 96/95 - 1\66 comma
Line 9: Line 9:
It is distinctly [[consistent]] through the [[15-odd-limit]] (though just barely), and tempers out the 13-limit commas [[4225/4224]] and [[6656/6655]]. Higher-limit prime harmonics represented by 1848edo with less than 10% error are 37, 61, and 83, of which 61 is accurate to 0.002 edosteps (and is inherited from [[231edo]]). The harmonics represented by less than 20% error are 19, 47, 59, 67, 89.  
It is distinctly [[consistent]] through the [[15-odd-limit]] (though just barely), and tempers out the 13-limit commas [[4225/4224]] and [[6656/6655]]. Higher-limit prime harmonics represented by 1848edo with less than 10% error are 37, 61, and 83, of which 61 is accurate to 0.002 edosteps (and is inherited from [[231edo]]). The harmonics represented by less than 20% error are 19, 47, 59, 67, 89.  


1848edo is unique in that it consistently tunes both [[81/80]] and [[64/63]] to an integer fraction of the octave, 1/56th and 1/44th respectively. As a corollary, it supports barium and ruthenium temperaments, which have periods 56 and 44 respectively. While every edo that is a multiple of 616 shares the property of directly mapping 81/80 and 64/63 to fractions of the octave, 1848edo is unique due to its strength in simple harmonics and it actually shows how 81/80 and 64/63 are produced. Remarkably, on the patent val 1848edo tempers [[96/95]] also to [[66edo|1\66]], though it is not consistent in the 19-limit.  
1848edo is unique in that it consistently tunes both [[81/80]] and [[64/63]] to an integer fraction of the octave, 1/56th and 1/44th respectively. As a corollary, it supports barium and ruthenium temperaments, which have periods 56 and 44 respectively. While every edo that is a multiple of 616 shares the property of directly mapping 81/80 and 64/63 to fractions of the octave, 1848edo is unique due to its strength in simple harmonics and it actually shows how 81/80 and 64/63 are produced. Remarkably, on the patent val 1848edo tempers [[96/95]] also to [[66edo|1\66]], being a great 2.3.5.19 subgroup tuning.  


=== Prime harmonics ===
=== Prime harmonics ===