Ringer scale: Difference between revisions

No edit summary
Line 8: Line 8:
A perfect ringer ''n'' scale is one that by some val can map the first ''n'' odd harmonics to distinct numbers of steps up to [[octave equivalence]]. These are the only perfect ringer scales:
A perfect ringer ''n'' scale is one that by some val can map the first ''n'' odd harmonics to distinct numbers of steps up to [[octave equivalence]]. These are the only perfect ringer scales:


'''Ringer 1:''' 1:2
'''Ringer 1:''' 1:2 (val: {{val| 1 }})


'''Ringer 2:''' 2:3:4
'''Ringer 2:''' 2:3:4 (val: {{val| 2 3 }})


'''Ringer 3:''' 3:4:5:6
'''Ringer 3:''' 3:4:5:6 (val: {{val| 3 5 7 }})


'''Ringer 4:''' 4:5:6:7:8
'''Ringer 4:''' 4:5:6:7:8 (val: {{val| 4 6 9 11 }})


'''Ringer 5:''' 5:6:7:8:9:10
'''Ringer 5:''' 5:6:7:8:9:10 (val: {{val| 5 8 12 14 }})


'''Ringer 7:''' 7:8:9:10:11:12:13:14
'''Ringer 7:''' 7:8:9:10:11:12:13:14 (val: {{val| 7 11 16 20 24 26 }})


Notice how all of these do not skip any harmonics while representing the harmonic series ''completely'' up to some [[odd-limit]].
Notice how all of these do not skip any harmonics while representing the harmonic series ''completely'' up to some [[odd-limit]].