|
|
Line 401: |
Line 401: |
| == Approximation to JI == | | == Approximation to JI == |
| === 15-odd-limit interval mappings === | | === 15-odd-limit interval mappings === |
| The following table shows how [[15-odd-limit intervals]] are represented in 26edo. Prime harmonics are in '''bold'''; intervals with a non-[[consistent]] mapping are in ''italic''.
| | {{Q-odd-limit intervals|26}} |
| | |
| {| class="wikitable mw-collapsible mw-collapsed center-all" | |
| |+style=white-space:nowrap| 15-odd-limit intervals by direct approximation (even if inconsistent)
| |
| |-
| |
| ! Interval, complement
| |
| ! Error (abs, [[Cent|¢]])
| |
| |-
| |
| | [[13/12]], [[24/13]]
| |
| | 0.111
| |
| |-
| |
| | '''[[8/7]], [[7/4]]'''
| |
| | '''0.405'''
| |
| |-
| |
| | [[14/11]], [[11/7]]
| |
| | 2.123
| |
| |-
| |
| | [[10/9]], [[9/5]]
| |
| | 2.212
| |
| |-
| |
| | '''[[11/8]], [[16/11]]'''
| |
| | '''2.528'''
| |
| |-
| |
| | [[13/10]], [[20/13]]
| |
| | 7.325
| |
| |-
| |
| | [[6/5]], [[5/3]]
| |
| | 7.436
| |
| |-
| |
| | [[18/13]], [[13/9]]
| |
| | 9.536
| |
| |-
| |
| | '''[[4/3]], [[3/2]]'''
| |
| | '''9.647'''
| |
| |-
| |
| | '''[[16/13]], [[13/8]]'''
| |
| | '''9.758'''
| |
| |-
| |
| | [[7/6]], [[12/7]]
| |
| | 10.052
| |
| |-
| |
| | [[14/13]], [[13/7]]
| |
| | 10.163
| |
| |-
| |
| | [[12/11]], [[11/6]]
| |
| | 12.176
| |
| |-
| |
| | [[13/11]], [[22/13]]
| |
| | 12.287
| |
| |-
| |
| | ''[[15/11]], [[22/15]]''
| |
| | ''16.895''
| |
| |-
| |
| | [[15/13]], [[26/15]]
| |
| | 16.972
| |
| |-
| |
| | '''[[5/4]], [[8/5]]'''
| |
| | '''17.083'''
| |
| |-
| |
| | [[7/5]], [[10/7]]
| |
| | 17.488
| |
| |-
| |
| | ''[[15/14]], [[28/15]]''
| |
| | ''19.019''
| |
| |-
| |
| | [[9/8]], [[16/9]]
| |
| | 19.295
| |
| |-
| |
| | ''[[16/15]], [[15/8]]''
| |
| | ''19.424''
| |
| |-
| |
| | [[11/10]], [[20/11]]
| |
| | 19.611
| |
| |-
| |
| | [[9/7]], [[14/9]]
| |
| | 19.699
| |
| |-
| |
| | [[11/9]], [[18/11]]
| |
| | 21.823
| |
| |}
| |
| {{15-odd-limit|26}}
| |
|
| |
|
| == Approximation to irrational intervals == | | == Approximation to irrational intervals == |