The Riemann zeta function and tuning: Difference between revisions
Contribution (talk | contribs) No edit summary |
m →Removing primes: add links |
||
Line 450: | Line 450: | ||
Multiplying the Z-function by this factor of adjustment gives a Z-function with the prime p removed from consideration. Zeta peak and zeta integral tunings may then be found as before. | Multiplying the Z-function by this factor of adjustment gives a Z-function with the prime p removed from consideration. Zeta peak and zeta integral tunings may then be found as before. | ||
Removing 2 leads to increasing adjusted peak values corresponding to the division of 3 (the "tritave") into 4, 7, 9, 13, 15, 17, 26, 32, 39, 45, 52, 56, 71, 75, 88, 131, 245, 316 ... parts. A striking feature of this list is the appearance not only of [[13edt|13edt]], the [[Bohlen-Pierce|Bohlen-Pierce]] division of the tritave, but the multiples 26, 39 and 52 also. | Removing 2 leads to increasing adjusted peak values corresponding to the division of 3 (the "tritave") into {{EDTs|4, 7, 9, 13, 15, 17, 26, 32, 39, 45, 52, 56, 71, 75, 88, 131, 245, 316...}} parts. A striking feature of this list is the appearance not only of [[13edt|13edt]], the [[Bohlen-Pierce|Bohlen-Pierce]] division of the tritave, but the multiples 26, 39 and 52 also. | ||
=== Black magic formulas === | === Black magic formulas === |