28edo: Difference between revisions
CompactStar (talk | contribs) Not a temperament |
|||
Line 3: | Line 3: | ||
== Theory == | == Theory == | ||
{{Harmonics in equal|28}} | {{Harmonics in equal|28}} | ||
{{Harmonics in equal|28|start=12|collapsed=1|intervals=odd}} | |||
28edo is a multiple of both [[7edo]] and [[14edo]] (and of course [[2edo]] and [[4edo]]). It shares three intervals with [[12edo]]: the 300 cent minor third, the 600 cent tritone, and the 900 cent major sixth. Thus it [[tempering_out|tempers out]] the [[greater diesis]] [[648/625|648:625]]. It does not however temper out the [[128/125|128:125]] [[lesser_diesis|lesser diesis]], as 28 is not divisible by 3. It has the same perfect fourth and fifth as 7edo. It also has decent approximations of several septimal intervals, of which [[9/7]] and its inversion [[14/9]] are also found in 14edo. Its approximation to [[5/4]] is unusually good for an edo of this size, being the next convergent to log<sub>2</sub>5 after [[3edo]]. | 28edo is a multiple of both [[7edo]] and [[14edo]] (and of course [[2edo]] and [[4edo]]). It shares three intervals with [[12edo]]: the 300 cent minor third, the 600 cent tritone, and the 900 cent major sixth. Thus it [[tempering_out|tempers out]] the [[greater diesis]] [[648/625|648:625]]. It does not however temper out the [[128/125|128:125]] [[lesser_diesis|lesser diesis]], as 28 is not divisible by 3. It has the same perfect fourth and fifth as 7edo. It also has decent approximations of several septimal intervals, of which [[9/7]] and its inversion [[14/9]] are also found in 14edo. Its approximation to [[5/4]] is unusually good for an edo of this size, being the next convergent to log<sub>2</sub>5 after [[3edo]]. |