User:Ganaram inukshuk/Sandbox: Difference between revisions

Ganaram inukshuk (talk | contribs)
Ganaram inukshuk (talk | contribs)
Clean up sandbox
Line 1: Line 1:
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)


== Descendants of mosses (for reference) ==
* [[5L 1s]]
** [[5L 6s]] and [[6L 5s]]
*** 5L 11s, 11L 5s, 6L 11s, and 11L 6s
**** 5L 16s, 16L 5s, 11L 16s, 16L 11s, 6L 17s, 17L 6s, 11L 17s, and 17L 11s
*  
*  


Line 12: Line 6:


=== TAMNAMS use ===
=== TAMNAMS use ===
<blockquote>''This article assumes [[TAMNAMS]] conventions for naming scale degrees, intervals, and step ratios.''</blockquote>Names for the [[Degree|scale degrees]] of ''x''L ''y''s, the position of the scales tones, are called '''mosdegrees''', or '''''prefix''degrees'''. Its [[Interval|intervals]], the pitch difference between any two tones, are based on the number of large and small steps between them and are called '''mossteps''', or '''''prefix''steps'''. Both mosdegrees and mossteps use ''0-indexed'' numbering, as opposed to using ''1-indexed ordinals'', such as mos-1st instead of 0-mosstep. The use of 1-indexed ordinal names is only allowed when comparing what diatonic interval category the scale's intervals fall under, rather than the names of the intervals and degrees themselves.
<blockquote>''This article assumes [[TAMNAMS]] conventions for naming scale degrees, intervals, and step ratios.''</blockquote>Names for the [[Degree|scale degrees]] of ''x''L ''y''s, the position of the scales tones, are called '''mosdegrees''', or '''''prefix''degrees'''. Its [[Interval|intervals]], the pitch difference between any two tones, are based on the number of large and small steps between them and are called '''mossteps''', or '''''prefix''steps'''. Both mosdegrees and mossteps use ''0-indexed'' numbering, as opposed to using ''1-indexed ordinals'', such as mos-1st instead of 0-mosstep. The use of 1-indexed ordinal names is discouraged for nondiatonic MOS scales.


=== JI ratio intro ===
=== JI ratio intro ===
Line 69: Line 63:
*Allow option to show the bright generator, dark generator, or no generator.
*Allow option to show the bright generator, dark generator, or no generator.
*JI ratios column only shows if there are any ratios to show
*JI ratios column only shows if there are any ratios to show
===Expanded MOS intro===
====Base wording====
'''''scalesig''''', called '''''mosname''''' in TAMNAMS, (alternatively called '''''alt-mosname'''''), is a(n) ''equave-equivalent'' moment-of-symmetry scale containing ''x'' large steps(s) and ''y'' small step(s), forming a step pattern '''''step-pattern''''' that repeats every ''equave''. Generators that produce this scale range from ''g1''¢ to ''g2''¢, or from ''d1''¢ or ''d2''¢.
'''''scalesig''''', called '''''mosname''''' in TAMNAMS, (alternatively called '''''alt-mosname'''''), is a(n) ''equave-equivalent'' moment-of-symmetry scale containing ''x'' large steps(s) and ''y'' small step(s), with a period of ''x''/''n'' large and ''y''/''n'' small steps(s) that forms a step pattern '''''step-pattern-per-period''''' that repeats every ''p''¢, or ''n'' times every ''equave''. Generators that produce this scale range from ''g1''¢ to ''g2''¢, or from ''d1''¢ or ''d2''¢.
==== Rothenprop info ====
Single-period scales: Scales of this form always exhibit Rothenberg propriety because there is only one small step.
Multi-period scales: Scales of this form always exhibit Rothenberg propriety because there is only one small step per period.
==== Descendant info (descendants of tamnams-named mosses only) ====
'''''scalesig''''' is a '''''chromatic/enharmonic'' scale of ''parent-scalesig''''', an extension of ''parent-scalesig'' scales with a ''step-ratio-range'' step ratio.
'''''scalesig''''' is a ''descendant'' scale of '''''parent-scalesig'''''.
==== Full wording ====
'''''scalesig''''', called '''''mosname''''' in TAMNAMS, (alternatively called '''''alt-mosname'''''), is a(n) ''equave-equivalent'' moment-of-symmetry scale containing ''x'' large steps(s) and ''y'' small step(s), forming a step pattern '''''step-pattern''''' that repeats every ''equave''. ''Descendant-info''. Generators that produce this scale range from ''g1''¢ to ''g2''¢, or from ''d1''¢ or ''d2''¢. ''Rothenprop-info''.
'''''scalesig''''', called '''''mosname''''' in TAMNAMS, (alternatively called '''''alt-mosname'''''), is a(n) ''equave-equivalent'' moment-of-symmetry scale containing ''x'' large steps(s) and ''y'' small step(s), with a period of ''x''/''n'' large and ''y''/''n'' small steps(s) that forms a step pattern '''''step-pattern-per-period''''' that repeats every ''p''¢, or ''n'' times every ''equave''. ''Descendant-info''. Generators that produce this scale range from ''g1''¢ to ''g2''¢, or from ''d1''¢ or ''d2''¢. ''Rothenprop-info''.
==== Examples ====
'''5L 7s''', also called '''p-chromatic''', is an octave-equivalent moment of symmetry scale containing 5 large steps and 7 small steps, repeating every octave. 5L 7s is a '''chromatic scale of 5L 2s''', an extension of 5L 2s scales with a hard-of-basic step ratio. Generators that produce this scale range from 700¢ to 720¢, or from 480¢ to 500¢.


===Mos ancestors and descendants===
===Mos ancestors and descendants===
Line 160: Line 129:


</div>
</div>
== Scale tree formatting ==
Proposed changes:
* Merge step ratio and hardness columns
Advanced table may need custom html?
{| class="wikitable center-all"
! colspan="7" rowspan="2" |Generator (in steps of [[edo]])
! colspan="2" |Cents
! colspan="2" |Step ratio
! rowspan="2" |Comments
|-
!Bright
!Dark
!L:s
!Hardness
|-
|style="border-width:0"|[[7edo|4\7]]
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|685.714
|514.286
|1:1
|1.000
|Equalized 5L 2s
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|╭
|style="border-width:0"|[[47edo|27\47]]
|689.362
|510.638
|7:6
|1.167
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|╭
|style="border-width:0"|[[40edo|23\40]]
|style="border-width:0"|
|690.000
|510.000
|6:5
|1.200
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|╰
|style="border-width:0"|[[73edo|42\73]]
|690.411
|509.589
|11:9
|1.222
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|╭
|style="border-width:0"|[[33edo|19\33]]
|style="border-width:0"|
|style="border-width:0"|
|690.909
|509.091
|5:4
|1.250
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|╭
|style="border-width:0"|[[92edo|53\92]]
|691.304
|508.696
|14:11
|1.273
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|╰
|style="border-width:0"|[[59edo|34\59]]
|style="border-width:0"|
|691.525
|508.475
|9:7
|1.286
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|╰
|style="border-width:0"|[[85edo|49\85]]
|691.765
|508.235
|13:10
|1.300
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|╭
|style="border-width:0"|[[26edo|15\26]]
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|692.308
|507.692
|4:3
|1.333
| Supersoft 5L 2s
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|╭
|style="border-width:0"|[[97edo|56\97]]
|692.784
|507.216
|15:11
|1.364
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|╭
|style="border-width:0"|[[71edo|41\71]]
|style="border-width:0"|
|692.958
|507.042
|11:8
|1.375
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|╰
|style="border-width:0"|[[116edo|67\116]]
|693.103
|506.897
|18:13
|1.385
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|╰
|style="border-width:0"|[[45edo|26\45]]
|style="border-width:0"|
|style="border-width:0"|
|693.333
|506.667
|7:5
|1.400
|style="border-width:0"|[[Flattone]] is in this region
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|╭
|style="border-width:0"|[[109edo|63\109]]
|693.578
|506.422
|17:12
|1.417
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|╰
|style="border-width:0"|[[64edo|37\64]]
|style="border-width:0"|
|693.750
|506.250
|10:7
|1.429
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|╰
|style="border-width:0"|[[83edo|48\83]]
|693.976
|506.024
|13:9
|1.444
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|╭
|style="border-width:0"|[[19edo|11\19]]
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|694.737
|505.263
|3:2
|1.500
|Soft 5L 2s
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|╭
|style="border-width:0"|[[88edo|51\88]]
|695.455
|504.545
|14:9
|1.556
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|╭
|style="border-width:0"|[[69edo|40\69]]
|style="border-width:0"|
|695.652
|504.348
|11:7
|1.571
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|╰
|style="border-width:0"|[[119edo|69\119]]
|695.798
|504.202
|19:12
|1.583
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|╭
|style="border-width:0"|[[50edo|29\50]]
|style="border-width:0"|
|style="border-width:0"|
|696.000
| 504.000
|8:5
|1.600
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|╭
|style="border-width:0"|[[131edo|76\131]]
|696.183
|503.817
|21:13
|1.615
|style="border-width:0"|[[Golden meantone]] (696.2145¢)
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|╰
|style="border-width:0"|[[81edo|47\81]]
|style="border-width:0"|
|696.296
|503.704
|13:8
|1.625
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|╰
|style="border-width:0"|[[112edo|65\112]]
|696.429
|503.571
|18:11
|1.636
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|╰
|style="border-width:0"|[[31edo|18\31]]
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|696.774
|503.226
|5:3
|1.667
|Semisoft 5L 2s
[[Meantone]] is in this region
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|╭
|style="border-width:0"|[[105edo|61\105]]
|697.143
| 502.857
|17:10
|1.700
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|╭
|style="border-width:0"|[[74edo|43\74]]
|style="border-width:0"|
|697.297
|502.703
|12:7
|1.714
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|╰
|style="border-width:0"|[[117edo|68\117]]
|697.436
|502.564
|19:11
|1.727
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|╰
|style="border-width:0"|[[43edo|25\43]]
|style="border-width:0"|
|style="border-width:0"|
|697.674
|502.326
|7:4
|1.750
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|[[98edo|57\98]]
|697.959
|502.041
|16:9
|1.778
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|╰
|style="border-width:0"|[[55edo|32\55]]
|style="border-width:0"|
|698.182
|501.818
|9:5
|1.800
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|╰
|style="border-width:0"|[[67edo|39\67]]
|698.507
| 501.493
|11:6
|1.833
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|[[12edo|7\12]]
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|700.000
|500.000
|2:1
|2.000
|Basic 5L 2s
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|╭
|style="border-width:0"|[[65edo|38\65]]
|701.538
|498.462
|11:5
|2.200
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|╭
|style="border-width:0"|[[53edo|31\53]]
|style="border-width:0"|
|701.887
|498.113
|9:4
|2.250
|The generator closest to a just [[3/2]] for EDOs less than 200
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|╰
|style="border-width:0"|[[94edo|55\94]]
|702.128
|497.872
|16:7
|2.286
|style="border-width:0"|[[Garibaldi]] / [[Cassandra]]
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|╭
|style="border-width:0"|[[41edo|24\41]]
|style="border-width:0"|
|style="border-width:0"|
|702.439
|497.561
|7:3
|2.333
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|╭
|style="border-width:0"|[[111edo|65\111]]
|702.703
|497.297
|19:8
|2.375
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|╰
|style="border-width:0"|[[70edo|41\70]]
|style="border-width:0"|
|702.857
|497.143
|12:5
|2.400
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|╰
|style="border-width:0"|[[99edo|58\99]]
|703.030
|496.970
|17:7
|2.429
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|╭
|style="border-width:0"|[[29edo|17\29]]
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|703.448
|496.552
|5:2
|2.500
|Semihard 5L 2s
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|╭
|style="border-width:0"|[[104edo|61\104]]
|703.846
|496.154
|18:7
|2.571
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|╭
|style="border-width:0"|[[75edo|44\75]]
|style="border-width:0"|
|704.000
|496.000
|13:5
|2.600
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|╰
|style="border-width:0"|[[121edo|71\121]]
|704.132
|495.868
|21:8
|2.625
|Golden neogothic (704.0956¢)
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|╰
|style="border-width:0"|[[46edo|27\46]]
|style="border-width:0"|
|style="border-width:0"|
|704.348
|495.652
|8:3
|2.667
|style="border-width:0"|[[Neogothic]] is in this region
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|╭
|style="border-width:0"|[[109edo|64\109]]
|704.587
|495.413
|19:7
|2.714
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|╰
|style="border-width:0"|[[63edo|37\63]]
|style="border-width:0"|
|704.762
|495.238
|11:4
|2.750
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|╰
|style="border-width:0"|[[80edo|47\80]]
|705.000
|495.000
|14:5
|2.800
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|╰
|style="border-width:0"|[[17edo|10\17]]
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|705.882
|494.118
|3:1
|3.000
|Hard 5L 2s
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|╭
|style="border-width:0"|[[73edo|43\73]]
|706.849
|493.151
|13:4
|3.250
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|╭
|style="border-width:0"|[[56edo|33\56]]
|style="border-width:0"|
|707.143
|492.857
|10:3
|3.333
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|╰
|style="border-width:0"|[[95edo|56\95]]
|707.368
|492.632
|17:5
|3.400
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|╭
|style="border-width:0"|[[39edo|23\39]]
|style="border-width:0"|
|style="border-width:0"|
|707.692
|492.308
|7:2
|3.500
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|╭
|style="border-width:0"|[[100edo|59\100]]
|708.000
|492.000
|18:5
|3.600
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|╰
|style="border-width:0"|[[61edo|36\61]]
|style="border-width:0"|
|708.197
|491.803
|11:3
|3.667
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|╰
|style="border-width:0"|[[83edo|49\83]]
|708.434
|491.566
|15:4
|3.750
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|╰
|style="border-width:0"|[[22edo|13\22]]
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|709.091
|490.909
|4:1
|4.000
|Superhard 5L 2s
[[Archy]] is in this region
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|
|style="border-width:0"|╭
|style="border-width:0"|[[71edo|42\71]]
|709.859
|490.141
|13:3
|4.333
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|╭
|style="border-width:0"|[[49edo|29\49]]
|style="border-width:0"|
|710.204
|489.796
|9:2
|4.500
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|┆
|style="border-width:0"|╰
|style="border-width:0"|[[76edo|45\76]]
|710.526
|489.474
|14:3
|4.667
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|╰
|style="border-width:0"|[[27edo|16\27]]
|style="border-width:0"|
|style="border-width:0"|
|711.111
|488.889
|5:1
|5.000
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|┆
|style="border-width:0"|╭
|style="border-width:0"|[[59edo|35\59]]
|711.864
|488.136
|11:2
|5.500
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|╰
|style="border-width:0"|[[32edo|19\32]]
|style="border-width:0"|
|712.500
|487.500
|6:1
|6.000
|style="border-width:0"|
|-
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|╰
|style="border-width:0"|[[37edo|22\37]]
|713.514
|486.486
|7:1
|7.000
|style="border-width:0"|
|-
|style="border-width:0"|[[5edo|3\5]]
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|style="border-width:0"|
|720.000
|480.000
|1:0
|→ ∞
|Collapsed 5L 2s
|}