Fractal scale: Difference between revisions
m →Logarithmic fractal scales: fixed typos |
|||
Line 148: | Line 148: | ||
If we wish to make the scale steps more even, then we can choose some smallest '''threshold interval''' ''ε'' in the linear case (or 1+''ε'' in the logarithmic case). Here we consider the linear case. On each step, we divide an interval if it is larger than ''ε'', otherwise we leave it untouched if it is smaller than ''ε''. Since the divided intervals get smaller and smaller, we will eventually reach a point where the intervals become smaller than ''ε'', so this process will terminate after a finite amount of steps (and hence the scale is also finite). Here is an example: | If we wish to make the scale steps more even, then we can choose some smallest '''threshold interval''' ''ε'' in the linear case (or 1+''ε'' in the logarithmic case). Here we consider the linear case. On each step, we divide an interval if it is larger than ''ε'', otherwise we leave it untouched if it is smaller than ''ε''. Since the divided intervals get smaller and smaller, we will eventually reach a point where the intervals become smaller than ''ε'', so this process will terminate after a finite amount of steps (and hence the scale is also finite). Here is an example: | ||
{ | {| class="wikitable" | ||
|+3:4:6 truncated linear fractal scales, threshold ''ε'' = 1/16 | |||
!Order | |||
!Number of steps | |||
!Step visualization | |||
!Chord | |||
!Intervals < 1/16 | |||
|- | |||
|0 | |||
|1 | |||
|├───────────────────────────────────────────────────────────────┤ | |||
|1:2 | |||
|1 | |||
|- | |||
|1 | |||
|2 | |||
|├────────────────────┼──────────────────────────────────────────┤ | |||
|3:4:6 | |||
|1/3 2/3 | |||
|- | |||
|2 | |||
|4 | |||
|├──────┼─────────────┼─────────────┼────────────────────────────┤ | |||
|9:10:12:14:18 | |||
|1/9 2/9 4/9 | |||
|- | |||
|3 | |||
|8 | |||
|<span style="color:red">├─┼</span>────┼────┼────────┼────┼────────┼────────┼───────────────────┤ | |||
|27:28:30:32:36:38:42:46:54 | |||
|2/27 4/27 8/27 | |||
|- | |||
|4 | |||
|15 | |||
|<span style="color:red">├─┼─┼──┼─┼──┼──┼</span>─────<span style="color:red">┼─┼──┼──┼</span>─────<span style="color:red">┼──┼</span>─────┼─────┼─────────────┤ | |||
|81:84:86:90:92:96:100:108:110:114:118:126:130:138:146:162 | |||
|8/81 16/81 | |||
|- | |||
|5 | |||
|20 | |||
|<span style="color:red">├─┼─┼──┼─┼──┼──┼─┼</span>───<span style="color:red">┼─┼──┼──┼─┼</span>───<span style="color:red">┼──┼─┼</span>───<span style="color:red">┼─┼</span>───┼───┼─────────┤ | |||
|243:252:258:270:276:288:300:308:324:330:342: | |||
354:362:378:390:398:414:422:438:454:486 | |||
|16/243 32/243 | |||
|- | |||
|6 | |||
|26 | |||
|<span style="color:red">├─┼─┼──┼─┼──┼──┼─┼┼──┼─┼──┼──┼─┼┼──┼──┼─┼┼──┼─┼┼──┼┼──┼──┼</span>──────┤ | |||
|729:756:774:810:828:864:900:924:940:972:990:1026:1062:1086:1102: | |||
1134:1170:1194:1210:1242:1266:1282:1314:1330:1362:1394:1458 | |||
|64/729 | |||
|- | |||
|7 | |||
|27 | |||
|<span style="color:red">├─┼─┼──┼─┼──┼──┼─┼┼──┼─┼──┼──┼─┼┼──┼──┼─┼┼──┼─┼┼──┼┼──┼──┼─┼────┤</span> | |||
|2187:2268:2322:2430:2484:2592:2700:2772:2820:2916:2970:3078:3186:3258: | |||
3306:3402:3510:3582:3630:3726:3798:3846:3942:3990:4086:4182:4246:4374 | |||
|none | |||
|} | |||
Alternatively, we can do ''' | Alternatively, we can do '''pre-stopping''' -- we stop dividing the interval if any of the ''divided parts'' of the interval would be smaller than the threshold. Here is another example: | ||
{{todo|add examples|inline=1|comment=Create table with a simple example.}} | {{todo|add examples|inline=1|comment=Create table with a simple example.}} |