Neutral and interordinal intervals in MOS scales: Difference between revisions

Inthar (talk | contribs)
Tags: Mobile edit Mobile web edit
Inthar (talk | contribs)
Tags: Mobile edit Mobile web edit
Line 129: Line 129:


=== Lemma 1 ===
=== Lemma 1 ===
Let n and k be integers, and let x be a real number such that kx is not an integer. Then floor((n+k)x) − floor(nx) ≥ floor(kx).
Let n and k be integers, and let x be a real number such that kx is not an integer. Then floor((n + k)x) − floor(nx) ≥ floor(kx).
==== Proof ====
==== Proof ====
floor((n+k)x) − floor(nx) = -1 + ceil((n+k)x) + ceil(-nx) ≥ ceil((n+k)x − nx) − 1 = ceil(kx) − 1 = floor(kx).
floor((n + k)x) − floor(nx) = -1 + ceil((n + k)x) + ceil(−nx) ≥ ceil((n + k)x − nx) − 1 = ceil(kx) − 1 = floor(kx).


=== Discretizing Lemma ===
=== Discretizing Lemma ===