63edo: Difference between revisions
m →Related pages: Update link |
m Replaced old harmonics template with new template |
||
Line 4: | Line 4: | ||
63 is also a fascinating division to look at in the 23-limit, as its regular augmented fourth (+6 fifths) is less than 0.3c sharp of 23/16, therefore tempering out 736/729. Although it doesn't deal as well with primes 5, 17, and 19, it excels in the 2.3.7.11.13.23 group, and is a great candidate for a rank-1 or rank-2 gentle tuning. As a fifths-system, the diesis after 12 fifths can represent 32:33, 27:28, 88:91, and more, making chains of fifths 12 or longer very useful in covering harmonic and melodic ground while providing a lot of different colour in different keys. A 17-tone fifths chain looks on the surface a little similar to [[17edo]], but as -17 fifths gets us to 64/63, observing the comma becomes an essential part in progressions favouring prime 7. | 63 is also a fascinating division to look at in the 23-limit, as its regular augmented fourth (+6 fifths) is less than 0.3c sharp of 23/16, therefore tempering out 736/729. Although it doesn't deal as well with primes 5, 17, and 19, it excels in the 2.3.7.11.13.23 group, and is a great candidate for a rank-1 or rank-2 gentle tuning. As a fifths-system, the diesis after 12 fifths can represent 32:33, 27:28, 88:91, and more, making chains of fifths 12 or longer very useful in covering harmonic and melodic ground while providing a lot of different colour in different keys. A 17-tone fifths chain looks on the surface a little similar to [[17edo]], but as -17 fifths gets us to 64/63, observing the comma becomes an essential part in progressions favouring prime 7. | ||
{{ | {{Harmonics in equal|63}} | ||
== Interval table == | == Interval table == |