Recursive structure of MOS scales: Difference between revisions

Inthar (talk | contribs)
Inthar (talk | contribs)
No edit summary
Tags: Mobile edit Mobile web edit
Line 460: Line 460:
for appropriate integers ''c, d, e, f'', where |''c''| < ''n'' and |''e''| < ''n''.  
for appropriate integers ''c, d, e, f'', where |''c''| < ''n'' and |''e''| < ''n''.  


Now we assume that ''g'' and ''p'' are linearly independent. Then:
Now we assume that ''g'' and ''p'' are linearly independent. By assumption ''a''L + ''b''s = (''ac'' + ''be'')''g'' + (''ad'' + ''bf'')''p'' = ''p''. Since ''a''L + ''b''s occurs on the "brightest" mode, from generatedness we have ''ac'' + ''be'' ∈ {0, ..., ''n'' &minus; 1}. Hence we must have ''ac'' + ''be'' = 0, and thus ''c'' = ±''b'' and ''e'' = ∓''a'', from the assumption that gcd(a, b) = 1.
# By assumption ''a''L + ''b''s = (''ac'' + ''be'')''g'' + (''ad'' + ''bf'')''p'' = ''p''. Since ''a''L + ''b''s occurs on the "brightest" mode, from generatedness we have ''ac'' + ''be'' ∈ {0, ..., ''n'' &minus; 1}. Hence we must have ''ac'' + ''be'' = 0, and thus ''c'' = ±''b'' and ''e'' = ∓''a'', from the assumption that gcd(a, b) = 1.
In fact, {L, s} is another valid basis for the abelian group with basis {''p'', ''g''}, since by binarity we have ''p, g'' ∈ span(L, s). Assume ''c'' = ''b'' and ''e'' = &minus;''a''. [This corresponds to assuming that ''g'' is the "bright" generator.] Let χ = L &minus; s > 0; then χ is ''p''-equivalent to ''+ng''. Now by generatedness and binarity, any interval class that has at least two sizes must have sizes separated by ''ng'' (the separation corresponding to changing an L step to an s step). Since ''g'' and ''p'' are linearly independent, for each ''j'' ∈ {1, ..., ''n'' &minus; 1} there exists at most one ''k'' = ''k''(''j'') ∈ {1, ..., ''n'' &minus; 1}</sub> such that ''jg'' is ''p''-equivalent to one size of ''k''-step. Hence if the class of ''k''-steps has ''at least'' two sizes, the sizes must be ''j''(''k'')''g'' and (''j''(''k'') &minus; ''n'')''g''; any other size must leave the range &minus;(''n'' &minus; 1)''g'', ..., 0, ..., (''n'' &minus; 1)''g''. Thus the class of ''k''-steps has at most two sizes for 1 ≤ ''k'' ≤ (''n'' &minus; 1). Each non-''p''-equivalent class must have ''exactly'' two sizes, since the inverse of the ''k''-step that is equivalent to ''jg'' is an (''n'' &minus; ''k'')-step equivalent to ''&minus;jg'', which by linear independence must be distinct from an (''n'' &minus; ''k'')-step equivalent to a positive number of ''g'' generators; note that the latter (''n'' &minus; ''k'')-step does occur in the "brightest" mode of ''S'', i.e. the mode with the most ''g'' generators stacked ''up'' rather than ''down'' from the tonic.
In fact, {L, s} is another valid basis for the abelian group with basis {''p'', ''g''}, since by binarity we have ''p, g'' ∈ span(L, s). Assume ''c'' = ''b'' and ''e'' = &minus;''a''. [This corresponds to assuming that ''g'' is the "bright" generator.] Let χ = L &minus; s > 0; then χ is ''p''-equivalent to ''+ng''. Now by generatedness and binarity, any interval class that has at least two sizes must have sizes separated by ''ng'' (the separation corresponding to changing an L step to an s step). Since ''g'' and ''p'' are linearly independent, for each ''j'' ∈ {1, ..., ''n'' &minus; 1} there exists at most one ''k'' = ''k''(''j'') ∈ {1, ..., ''n'' &minus; 1}</sub> such that ''jg'' is ''p''-equivalent to one size of ''k''-step. Hence if the class of ''k''-steps has ''at least'' two sizes, the sizes must be ''j''(''k'')''g'' and (''j''(''k'') &minus; ''n'')''g''; any other size must leave the range &minus;(''n'' &minus; 1)''g'', ..., 0, ..., (''n'' &minus; 1)''g''. Thus the class of ''k''-steps has at most two sizes for 1 ≤ ''k'' ≤ (''n'' &minus; 1). Each non-''p''-equivalent class must have ''exactly'' two sizes, since the inverse of the ''k''-step that is equivalent to ''jg'' is an (''n'' &minus; ''k'')-step equivalent to ''&minus;jg'', which by linear independence must be distinct from an (''n'' &minus; ''k'')-step equivalent to a positive number of ''g'' generators; note that the latter (''n'' &minus; ''k'')-step does occur in the "brightest" mode of ''S'', i.e. the mode with the most ''g'' generators stacked ''up'' rather than ''down'' from the tonic.