Trivial temperament: Difference between revisions

No edit summary
Cmloegcmluin (talk | contribs)
this temperament is already named "om temperament"; it does not need another arbitrary name (the additional "unison temperament" name suggested here is simply an acknowledgment of the well-established naming pattern whereby temperaments can be named after any existing well-established names for the comma/interval they temper out, e.g. such that "meantone temperament" might also be called "syntonic temperament")
Line 3: Line 3:
Just intonation is a codimension-0 "temperament", which means nothing is tempered. The set of commas that are made to [[vanish]] is the set {1/1}, but that's still a set, so JI is still a regular temperament. There is an infinite family of these "temperaments", one for each subgroup of JI. The [[2-limit]] version is the equal temperament [[1edo]]. The [[3-limit]] version is the rank-2 temperament [[pythagorean]], which has all the properties of any other rank-2 temperament except that it tempers no commas. The [[5-limit]] version is rank-3, and so on. The mapping for this temperament is an nxn identity matrix, with wedgies of <1|, <<1||, <<<1|||... .
Just intonation is a codimension-0 "temperament", which means nothing is tempered. The set of commas that are made to [[vanish]] is the set {1/1}, but that's still a set, so JI is still a regular temperament. There is an infinite family of these "temperaments", one for each subgroup of JI. The [[2-limit]] version is the equal temperament [[1edo]]. The [[3-limit]] version is the rank-2 temperament [[pythagorean]], which has all the properties of any other rank-2 temperament except that it tempers no commas. The [[5-limit]] version is rank-3, and so on. The mapping for this temperament is an nxn identity matrix, with wedgies of <1|, <<1||, <<<1|||... .


'''Om''' temperament is the rank-0 temperament, in which every interval is a comma. Thus all notes are represented by the same note. This is different from 1edo because not even octaves exist; it could be described as [[0edo]]. The mapping for this is the 0-val, &lt;0 0 ... 0|. It could also be called the '''unison temperament'''<ref>http://www.robertinventor.com/tuning-math/s__12/msg_11050-11074.html</ref>, following the common pattern whereby temperaments are named after the intervals they [[temper out]], where in this case the interval made to vanish is the [[unison]] (and therefore all intervals are brought together in unison). Because the question of whether the unison can vanish is like a Zen koan, it It could also be called the '''zen temperament'''. The name "Om" is a reference to [[Wikipedia:Om|that syllable's use in Hindu meditation practices]]; [[Keenan Pepper]] gave it this name because there's only one temperament-distinct pitch in the whole system, in the same way that "Om" in the meditation sense is the only word you need to create the whole universe.   
'''Om''' temperament is the rank-0 temperament, in which every interval is a comma. Thus all notes are represented by the same note. This is different from 1edo because not even octaves exist; it could be described as [[0edo]]. The mapping for this is the 0-val, &lt;0 0 ... 0|. It could also be called the '''unison temperament'''<ref>http://www.robertinventor.com/tuning-math/s__12/msg_11050-11074.html</ref>, following the common pattern whereby temperaments are named after the intervals they [[temper out]], where in this case the interval made to vanish is the [[unison]] (and therefore all intervals are brought together in unison). The name "Om" is a reference to [[Wikipedia:Om|that syllable's use in Hindu meditation practices]]; [[Keenan Pepper]] gave it this name because there's only one temperament-distinct pitch in the whole system, in the same way that "Om" in the meditation sense is the only word you need to create the whole universe.   


[[Category:Regular temperament theory]]
[[Category:Regular temperament theory]]