Andrew Heathwaite's MOS Investigations: Difference between revisions
Wikispaces>Andrew_Heathwaite **Imported revision 288263754 - Original comment: ** |
Wikispaces>igliashon **Imported revision 390971520 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:igliashon|igliashon]] and made on <tt>2012-12-10 14:33:53 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>390971520</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 232: | Line 232: | ||
* MB writes about Porcupine's [[MODMOS Scales|MODMOS]] scales (which I will deal with more below), summarizing, "<span class="commentBody">In short, when you're playing in porcupine, you should never feel like you're limited to just the 7 or 8-note MOS. Just freeform modify notes by L-s as much as you want, deliberately, in a willful attempt to explore porcupine chromaticism. It's even easier than meantone chromaticism.</span>" | * MB writes about Porcupine's [[MODMOS Scales|MODMOS]] scales (which I will deal with more below), summarizing, "<span class="commentBody">In short, when you're playing in porcupine, you should never feel like you're limited to just the 7 or 8-note MOS. Just freeform modify notes by L-s as much as you want, deliberately, in a willful attempt to explore porcupine chromaticism. It's even easier than meantone chromaticism.</span>" | ||
* MB: "I<span class="commentBody">n porcupine, bIII/bIII/bIII = IV/IV. This is the same thing as saying that 6/5 * 6/5 * 6/5 = 4/3 * 4/3</span>." | * MB: "I<span class="commentBody">n porcupine, bIII/bIII/bIII = IV/IV. This is the same thing as saying that 6/5 * 6/5 * 6/5 = 4/3 * 4/3</span>." | ||
* | * Someone argues that Porcupine doesn't do that great in the 5-limit after all, saying, "<span class="commentBody">Its only real selling-point over optimal meantone is simpler 7-limit and 11-limit approximations, but that assumes that these are a good in their own right and thus worth sacrificing some 5-limit efficiency; for anyone other than a dyed-in-the-wool xenharmonist, that's a questionable assumption to make.</span>" (As for me, I want those 7- and 11-limit approximations, and I could care less about a 5-limit temperament to rival meantone. I don't compose in 5-limit temperaments, period.) | ||
* In response to the above, Keenan Pepper says, "<span class="commentBody">You mentioned that almost every interval in the diatonic scale is a 9-limit consonance? Well, every interval in porcupine[7] is an 11-limit consonance! 1/1 10/9 9/8 6/5 5/4 4/3 11/8 16/11 3/2 8/5 5/3 16/9 9/5 2/1. Bam!</span>" (This is relevant to my work, which assumes composers want 11-limit approximations.) | * In response to the above, Keenan Pepper says, "<span class="commentBody">You mentioned that almost every interval in the diatonic scale is a 9-limit consonance? Well, every interval in porcupine[7] is an 11-limit consonance! 1/1 10/9 9/8 6/5 5/4 4/3 11/8 16/11 3/2 8/5 5/3 16/9 9/5 2/1. Bam!</span>" (This is relevant to my work, which assumes composers want 11-limit approximations.) | ||
* I (Andrew Heathwaite) added, "<span class="commentBody">...maybe another description for what Porcupine is good for is a *gateway* from 5 and 7 to 11, for those comfortable with the former and curious about the latter. As a full 11-limit temperament, it is efficient and easy.</span>" | * I (Andrew Heathwaite) added, "<span class="commentBody">...maybe another description for what Porcupine is good for is a *gateway* from 5 and 7 to 11, for those comfortable with the former and curious about the latter. As a full 11-limit temperament, it is efficient and easy.</span>" | ||
Line 1,574: | Line 1,574: | ||
<br /> | <br /> | ||
I'm going to zoom in on <a class="wiki_link" href="/Porcupine">Porcupine Temperament</a>, which has been mentioned on the Facebook Xenharmonic Alliance page recently as a xenharmonic alternative to Meantone. Here's a little list of some of the things that were mentioned, so they can be collected in one place and not lost forever in the impenetrable Facebook Caverns:<br /> | I'm going to zoom in on <a class="wiki_link" href="/Porcupine">Porcupine Temperament</a>, which has been mentioned on the Facebook Xenharmonic Alliance page recently as a xenharmonic alternative to Meantone. Here's a little list of some of the things that were mentioned, so they can be collected in one place and not lost forever in the impenetrable Facebook Caverns:<br /> | ||
<ul><li>Keenan Pepper writes about how Porcupine tempers 27/20, 15/11 and 25/18 all to the 11/8 approximation, which, he claims, is a stronger consonance than any of the intervals mentioned.</li><li>Mike Battaglia writes about how 81/80 is &quot;tempered in&quot; to 25/24, making it melodically useful instead of an &quot;irritating mystery interval&quot; which &quot;introduces pitch drift&quot;.</li><li>MB writes about Porcupine's <a class="wiki_link" href="/MODMOS%20Scales">MODMOS</a> scales (which I will deal with more below), summarizing, &quot;<span class="commentBody">In short, when you're playing in porcupine, you should never feel like you're limited to just the 7 or 8-note MOS. Just freeform modify notes by L-s as much as you want, deliberately, in a willful attempt to explore porcupine chromaticism. It's even easier than meantone chromaticism.</span>&quot;</li><li>MB: &quot;I<span class="commentBody">n porcupine, bIII/bIII/bIII = IV/IV. This is the same thing as saying that 6/5 * 6/5 * 6/5 = 4/3 * 4/3</span>.&quot;</li><li> | <ul><li>Keenan Pepper writes about how Porcupine tempers 27/20, 15/11 and 25/18 all to the 11/8 approximation, which, he claims, is a stronger consonance than any of the intervals mentioned.</li><li>Mike Battaglia writes about how 81/80 is &quot;tempered in&quot; to 25/24, making it melodically useful instead of an &quot;irritating mystery interval&quot; which &quot;introduces pitch drift&quot;.</li><li>MB writes about Porcupine's <a class="wiki_link" href="/MODMOS%20Scales">MODMOS</a> scales (which I will deal with more below), summarizing, &quot;<span class="commentBody">In short, when you're playing in porcupine, you should never feel like you're limited to just the 7 or 8-note MOS. Just freeform modify notes by L-s as much as you want, deliberately, in a willful attempt to explore porcupine chromaticism. It's even easier than meantone chromaticism.</span>&quot;</li><li>MB: &quot;I<span class="commentBody">n porcupine, bIII/bIII/bIII = IV/IV. This is the same thing as saying that 6/5 * 6/5 * 6/5 = 4/3 * 4/3</span>.&quot;</li><li>Someone argues that Porcupine doesn't do that great in the 5-limit after all, saying, &quot;<span class="commentBody">Its only real selling-point over optimal meantone is simpler 7-limit and 11-limit approximations, but that assumes that these are a good in their own right and thus worth sacrificing some 5-limit efficiency; for anyone other than a dyed-in-the-wool xenharmonist, that's a questionable assumption to make.</span>&quot; (As for me, I want those 7- and 11-limit approximations, and I could care less about a 5-limit temperament to rival meantone. I don't compose in 5-limit temperaments, period.)</li><li>In response to the above, Keenan Pepper says, &quot;<span class="commentBody">You mentioned that almost every interval in the diatonic scale is a 9-limit consonance? Well, every interval in porcupine[7] is an 11-limit consonance! 1/1 10/9 9/8 6/5 5/4 4/3 11/8 16/11 3/2 8/5 5/3 16/9 9/5 2/1. Bam!</span>&quot; (This is relevant to my work, which assumes composers want 11-limit approximations.)</li><li>I (Andrew Heathwaite) added, &quot;<span class="commentBody">...maybe another description for what Porcupine is good for is a *gateway* from 5 and 7 to 11, for those comfortable with the former and curious about the latter. As a full 11-limit temperament, it is efficient and easy.</span>&quot;</li></ul><br /> | ||
<!-- ws:start:WikiTextHeadingRule:14:&lt;h1&gt; --><h1 id="toc7"><a name="Porcupine Chromaticism"></a><!-- ws:end:WikiTextHeadingRule:14 -->Porcupine Chromaticism</h1> | <!-- ws:start:WikiTextHeadingRule:14:&lt;h1&gt; --><h1 id="toc7"><a name="Porcupine Chromaticism"></a><!-- ws:end:WikiTextHeadingRule:14 -->Porcupine Chromaticism</h1> | ||
<br /> | <br /> |