Just intonation subgroup: Difference between revisions

CompactStar (talk | contribs)
No edit summary
Inthar (talk | contribs)
No edit summary
Line 17: Line 17:
A prime subgroup that does not omit any primes < ''p'' (e.g. 2.3.5, 2.3.5.7, 2.3.5.7.11, etc. but not 2.3.7 or 3.5.7) is simply called 5-limit JI, 7-limit JI, etc. It is customary of just intonation subgroups to refer only to prime subgroups that do omit such primes, as well as the other two categories.
A prime subgroup that does not omit any primes < ''p'' (e.g. 2.3.5, 2.3.5.7, 2.3.5.7.11, etc. but not 2.3.7 or 3.5.7) is simply called 5-limit JI, 7-limit JI, etc. It is customary of just intonation subgroups to refer only to prime subgroups that do omit such primes, as well as the other two categories.


The following terminology has been proposed for streamlining pedagogy: Given a subgroup written as generated by a fixed (non-redundant) set: ''a''.''b''.''c''.[…].''d'', call any member of this set a '''[[basis]] element''', or '''formal prime'''.<ref>The meaning of "formal" this term is using is "of external form or structure, rather than nature or content", which is to say that a formal prime is not necessarily ''actually'' a prime, but we treat them as if they were. The original coiner of this term, inthar, has recommended its disuse, in favor of the mathematically accurate and generic "basis element", or possibly something else which indicates the co-uniqueness of the elements.</ref> For example, if the group is written 2.5/3.7/3, the basis elements are 2, 5/3 and 7/3.
The following terminology has been proposed for streamlining pedagogy: Given a subgroup written as generated by a fixed (non-redundant) set: ''a''.''b''.''c''.[…].''d'', call any member of this set a '''[[basis]] element''', '''structural prime''', or '''formal prime'''.<ref>The meaning of "formal" this term is using is "of external form or structure, rather than nature or content", which is to say that a formal prime is not necessarily ''actually'' a prime, but we treat them as if they were. The original coiner of this term, inthar, has recommended its disuse, in favor of the mathematically accurate and generic "basis element", or possibly something else which indicates the co-uniqueness of the elements.</ref> For example, if the group is written 2.5/3.7/3, the basis elements are 2, 5/3 and 7/3.


Subgroups in the strict sense come in two flavors: finite [[Wikipedia: Index of a subgroup|index]] and infinite index, where intuitively speaking the index measures the relative size of the subgroup within the entire ''p''-limit group. For example, the subgroups generated by 4 and 3, by 2 and 9, and by 4 and 6 all have index 2 in the full [[3-limit]] (Pythagorean) group. Half of the 3-limit intervals will belong to any one of them, and half will not, and all three groups are distinct. On the other hand, the group generated by 2, 3, and 7 is of infinite index in the full [[7-limit]] group, which is generated by 2, 3, 5 and 7. The index can be computed by taking the determinant of the matrix whose rows are the [[monzo]]s of the generators.
Subgroups in the strict sense come in two flavors: finite [[Wikipedia: Index of a subgroup|index]] and infinite index, where intuitively speaking the index measures the relative size of the subgroup within the entire ''p''-limit group. For example, the subgroups generated by 4 and 3, by 2 and 9, and by 4 and 6 all have index 2 in the full [[3-limit]] (Pythagorean) group. Half of the 3-limit intervals will belong to any one of them, and half will not, and all three groups are distinct. On the other hand, the group generated by 2, 3, and 7 is of infinite index in the full [[7-limit]] group, which is generated by 2, 3, 5 and 7. The index can be computed by taking the determinant of the matrix whose rows are the [[monzo]]s of the generators.