AFDO: Difference between revisions
CompactStar (talk | contribs) No edit summary |
CompactStar (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
'''ADO''' (arithmetic divisions of the octave) is a tuning system which divides the octave arithmetically rather than logarithmically. For any C-ADO system, the m-th degree is equal to the ratio (C+m)/C. For example, in 12-ADO the first degree is [[13/12]], the second is 14/12 ([[7/6]]), and so on. For an ADO system, the distance between interval ratios is equal, rater than the distance between their logarithms like in EDO systems. | '''ADO''' (arithmetic divisions of the octave) is a tuning system which divides the octave arithmetically rather than logarithmically. For any C-ADO system, the m-th degree is equal to the ratio (C+m)/C. For example, in 12-ADO the first degree is [[13/12]], the second is 14/12 ([[7/6]]), and so on. For an ADO system, the distance between interval ratios is equal, rater than the distance between their logarithms like in EDO systems. The best ADOs have more useful just intervals so they are generally highly divisible ones like highly composite or highly abundant numbers. | ||
If the first division is <math>R_1</math> (which is ratio of C/C) and the last , <math>R_n</math> (which is ratio of 2C/C), with common difference of d | If the first division is <math>R_1</math> (which is ratio of C/C) and the last , <math>R_n</math> (which is ratio of 2C/C), with common difference of d |