72edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 321255302 - Original comment: **
Wikispaces>guest
**Imported revision 340989126 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-04-16 19:44:13 UTC</tt>.<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2012-05-30 11:56:31 UTC</tt>.<br>
: The original revision id was <tt>321255302</tt>.<br>
: The original revision id was <tt>340989126</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
----
----
72-tone equal temperament (or 72-edo) divides the octave into 72 steps or //moria//. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of [[24edo|24-tone equal temperament]], a common and standard tuning of [[Arabic, Turkish, Persian|Arabic]] music, and has itself been used to tune Turkish music.
72-tone equal temperament (or 72-edo) divides the octave into 72 steps or //moria//. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of [[xenharmonic/24edo|24-tone equal temperament]], a common and standard tuning of [[xenharmonic/Arabic, Turkish, Persian|Arabic]] music, and has itself been used to tune Turkish music.


Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with [[96edo|96-edo]]), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.
Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with [[xenharmonic/96edo|96-edo]]), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.


72-tone equal temperament approximates [[11-limit|11-limit just intonation]] exceptionally well, is consistent in the [[17-limit]], and is the ninth [[The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|Zeta integral tuning]]. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.
72-tone equal temperament approximates [[xenharmonic/11-limit|11-limit just intonation]] exceptionally well, is consistent in the [[xenharmonic/17-limit|17-limit]], and is the ninth [[xenharmonic/The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|Zeta integral tuning]]. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.


72 is an excellent tuning for [[Gamelismic clan|miracle temperament]], especially the 11-limit version, and the related rank three temperament [[Marvel family#Prodigy|prodigy]], and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.
72 is an excellent tuning for [[xenharmonic/Gamelismic clan|miracle temperament]], especially the 11-limit version, and the related rank three temperament [[xenharmonic/Marvel family#Prodigy|prodigy]], and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.


=Harmonic Scale=  
=Harmonic Scale=  
Mode 8 of the harmonic series -- [[overtone scales|overtones 8 through 16]], octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).
Mode 8 of the harmonic series -- [[xenharmonic/overtone scales|overtones 8 through 16]], octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).


|| Overtones in "Mode 8": || 8 ||  || 9 ||  || 10 ||  || 11 ||  || 12 ||  || 13 ||  || 14 ||  || 15 ||  || 16 ||
|| Overtones in "Mode 8": || 8 ||  || 9 ||  || 10 ||  || 11 ||  || 12 ||  || 13 ||  || 14 ||  || 15 ||  || 16 ||
Line 53: Line 53:
|| 20 || 333.333 || 17/14 ||
|| 20 || 333.333 || 17/14 ||
|| 21 || 350 || 11/9 ||
|| 21 || 350 || 11/9 ||
|| 22 || 366.667 ||   ||
|| 22 || 366.667 || 16/13, 21/17, 26/21 ||
|| 23 || 383.333 || 5/4 ||
|| 23 || 383.333 || 5/4 ||
|| 24 || 400 ||  ||
|| 24 || 400 ||  ||
Line 81: Line 81:
|| 48 || 800 ||  ||
|| 48 || 800 ||  ||
|| 49 || 816.667 || 8/5 ||
|| 49 || 816.667 || 8/5 ||
|| 50 || 833.333 ||   ||
|| 50 || 833.333 || 13/8, 21/13, 34/21 ||
|| 51 || 850 || 18/11 ||
|| 51 || 850 || 18/11 ||
|| 52 || 866.667 || 28/17 ||
|| 52 || 866.667 || 28/17 ||
Line 107: Line 107:
=Linear temperaments=  
=Linear temperaments=  
||~ Periods per octave ||~ Generator ||~ Names ||
||~ Periods per octave ||~ Generator ||~ Names ||
|| 1 || 1\72 || [[quincy]] ||
|| 1 || 1\72 || [[xenharmonic/quincy|quincy]] ||
|| 1 || 5\72 ||  ||
|| 1 || 5\72 ||  ||
|| 1 || 7\72 || [[miracle]]/benediction/manna ||
|| 1 || 7\72 || [[xenharmonic/miracle|miracle]]/benediction/manna ||
|| 1 || 11\72 ||  ||
|| 1 || 11\72 ||  ||
|| 1 || 13\72 ||  ||
|| 1 || 13\72 ||  ||
|| 1 || 17\72 || [[neominor]] ||
|| 1 || 17\72 || [[xenharmonic/neominor|neominor]] ||
|| 1 || 19\72 || [[catakleismic]] ||
|| 1 || 19\72 || [[xenharmonic/catakleismic|catakleismic]] ||
|| 1 || 23\72 ||  ||
|| 1 || 23\72 ||  ||
|| 1 || 25\72 || [[sqrtphi]] ||
|| 1 || 25\72 || [[xenharmonic/sqrtphi|sqrtphi]] ||
|| 1 || 29\72 ||  ||
|| 1 || 29\72 ||  ||
|| 1 || 31\72 || [[marvo]]/zarvo ||
|| 1 || 31\72 || [[xenharmonic/marvo|marvo]]/zarvo ||
|| 1 || 35\72 || [[cotritone]] ||
|| 1 || 35\72 || [[xenharmonic/cotritone|cotritone]] ||
|| 2 || 1\72 ||  ||
|| 2 || 1\72 ||  ||
|| 2 || 5\72 || [[harry]] ||
|| 2 || 5\72 || [[xenharmonic/harry|harry]] ||
|| 2 || 7\72 ||  ||
|| 2 || 7\72 ||  ||
|| 2 || 11\72 || [[unidec]]/hendec ||
|| 2 || 11\72 || [[xenharmonic/unidec|unidec]]/hendec ||
|| 2 || 13\72 || [[wizard]]/lizard/gizzard ||
|| 2 || 13\72 || [[xenharmonic/wizard|wizard]]/lizard/gizzard ||
|| 2 || 17\72 ||  ||
|| 2 || 17\72 ||  ||
|| 3 || 1\72 ||  ||
|| 3 || 1\72 ||  ||
|| 3 || 5\72 || [[tritikleismic]] ||
|| 3 || 5\72 || [[xenharmonic/tritikleismic|tritikleismic]] ||
|| 3 || 7\72 ||  ||
|| 3 || 7\72 ||  ||
|| 3 || 11\72 || [[mirkat]] ||
|| 3 || 11\72 || [[xenharmonic/mirkat|mirkat]] ||
|| 4 || 1\72 || [[quadritikleismic]] ||
|| 4 || 1\72 || [[xenharmonic/quadritikleismic|quadritikleismic]] ||
|| 4 || 5\72 ||  ||
|| 4 || 5\72 ||  ||
|| 4 || 7\72 ||  ||
|| 4 || 7\72 ||  ||
|| 6 || 1\72 ||  ||
|| 6 || 1\72 ||  ||
|| 6 || 5\72 ||  ||
|| 6 || 5\72 ||  ||
|| 8 || 1\72 || [[octoid]] ||
|| 8 || 1\72 || [[xenharmonic/octoid|octoid]] ||
|| 8 || 2\72 || [[octowerck]] ||
|| 8 || 2\72 || [[xenharmonic/octowerck|octowerck]] ||
|| 8 || 4\72 ||  ||
|| 8 || 4\72 ||  ||
|| 9 || 1\72 ||  ||
|| 9 || 1\72 ||  ||
|| 9 || 3\72 || [[ennealimmal]]/ennealimmic ||
|| 9 || 3\72 || [[xenharmonic/ennealimmal|ennealimmal]]/ennealimmic ||
|| 12 || 1\72 || [[compton]] ||
|| 12 || 1\72 || [[xenharmonic/compton|compton]] ||
|| 18 || 1\72 || [[hemiennealimmal]] ||
|| 18 || 1\72 || [[xenharmonic/hemiennealimmal|hemiennealimmal]] ||
|| 24 || 1\72 || [[hours]] ||
|| 24 || 1\72 || [[xenharmonic/hours|hours]] ||
|| 36 || 1\72 ||  ||
|| 36 || 1\72 ||  ||


=Z function=  
=Z function=  
72edo is the ninth [[The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[The Riemann Zeta Function and Tuning#The%20Z%20function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.
72edo is the ninth [[xenharmonic/The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[xenharmonic/The Riemann Zeta Function and Tuning#The%20Z%20function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.


[[image:plot72.png]]
[[image:xenharmonic/plot72.png]]


=Music=  
=Music=  
[[http://www.archive.org/details/Kotekant|Kotekant]] [[http://www.archive.org/download/Kotekant/kotekant.mp3|play]] by [[Gene Ward Smith]]
[[http://www.archive.org/details/Kotekant|Kotekant]] [[http://www.archive.org/download/Kotekant/kotekant.mp3|play]] by [[xenharmonic/Gene Ward Smith|Gene Ward Smith]]
[[http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-72-edo.mp3|Twinkle canon – 72 edo]] by [[http://soonlabel.com/xenharmonic/archives/573|Claudi Meneghin]]
[[http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-72-edo.mp3|Twinkle canon – 72 edo]] by [[http://soonlabel.com/xenharmonic/archives/573|Claudi Meneghin]]


=Scales=
=Scales=  
[[smithgw72a]], [[smithgw72b]], [[smithgw72c]], [[smithgw72d]], [[smithgw72e]], [[smithgw72f]], [[smithgw72g]], [[smithgw72h]], [[smithgw72i]], [[smithgw72j]]
[[xenharmonic/smithgw72a|smithgw72a]], [[xenharmonic/smithgw72b|smithgw72b]], [[xenharmonic/smithgw72c|smithgw72c]], [[xenharmonic/smithgw72d|smithgw72d]], [[xenharmonic/smithgw72e|smithgw72e]], [[xenharmonic/smithgw72f|smithgw72f]], [[xenharmonic/smithgw72g|smithgw72g]], [[xenharmonic/smithgw72h|smithgw72h]], [[xenharmonic/smithgw72i|smithgw72i]], [[xenharmonic/smithgw72j|smithgw72j]]
[[blackjack]], [[miracle_8]], [[miracle_10]], [[miracle_12]], [[miracle_12a]], [[miracle_24hi]], [[miracle_24lo]]
[[xenharmonic/blackjack|blackjack]], [[xenharmonic/miracle_8|miracle_8]], [[xenharmonic/miracle_10|miracle_10]], [[xenharmonic/miracle_12|miracle_12]], [[xenharmonic/miracle_12a|miracle_12a]], [[xenharmonic/miracle_24hi|miracle_24hi]], [[xenharmonic/miracle_24lo|miracle_24lo]]
[[keenanmarvel]], [[xenakis_chrome]], [[xenakis_diat]], [[xenakis_schrome]]
[[xenharmonic/keenanmarvel|keenanmarvel]], [[xenharmonic/xenakis_chrome|xenakis_chrome]], [[xenharmonic/xenakis_diat|xenakis_diat]], [[xenharmonic/xenakis_schrome|xenakis_schrome]]
[[genus24255et72|Euler(24255) genus in 72 equal]]
[[xenharmonic/genus24255et72|Euler(24255) genus in 72 equal]]


=External links=  
=External links=  
Line 169: Line 169:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;72edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:16:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt;&lt;a href="#Harmonic Scale"&gt;Harmonic Scale&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#Intervals"&gt;Intervals&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt; | &lt;a href="#toc2"&gt; &lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;!-- ws:start:WikiTextTocRule:20: --&gt; | &lt;a href="#Linear temperaments"&gt;Linear temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:20 --&gt;&lt;!-- ws:start:WikiTextTocRule:21: --&gt; | &lt;a href="#Z function"&gt;Z function&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:21 --&gt;&lt;!-- ws:start:WikiTextTocRule:22: --&gt; | &lt;a href="#Music"&gt;Music&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;!-- ws:start:WikiTextTocRule:23: --&gt; | &lt;a href="#Scales"&gt;Scales&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:23 --&gt;&lt;!-- ws:start:WikiTextTocRule:24: --&gt; | &lt;a href="#External links"&gt;External links&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;72edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:16:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt;&lt;a href="#Harmonic Scale"&gt;Harmonic Scale&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#Intervals"&gt;Intervals&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt; | &lt;a href="#toc2"&gt; &lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;!-- ws:start:WikiTextTocRule:20: --&gt; | &lt;a href="#Linear temperaments"&gt;Linear temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:20 --&gt;&lt;!-- ws:start:WikiTextTocRule:21: --&gt; | &lt;a href="#Z function"&gt;Z function&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:21 --&gt;&lt;!-- ws:start:WikiTextTocRule:22: --&gt; | &lt;a href="#Music"&gt;Music&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;!-- ws:start:WikiTextTocRule:23: --&gt; | &lt;a href="#Scales"&gt;Scales&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:23 --&gt;&lt;!-- ws:start:WikiTextTocRule:24: --&gt; | &lt;a href="#External links"&gt;External links&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;
&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;hr /&gt;
&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;hr /&gt;
72-tone equal temperament (or 72-edo) divides the octave into 72 steps or &lt;em&gt;moria&lt;/em&gt;. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of &lt;a class="wiki_link" href="/24edo"&gt;24-tone equal temperament&lt;/a&gt;, a common and standard tuning of &lt;a class="wiki_link" href="/Arabic%2C%20Turkish%2C%20Persian"&gt;Arabic&lt;/a&gt; music, and has itself been used to tune Turkish music.&lt;br /&gt;
72-tone equal temperament (or 72-edo) divides the octave into 72 steps or &lt;em&gt;moria&lt;/em&gt;. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/24edo"&gt;24-tone equal temperament&lt;/a&gt;, a common and standard tuning of &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Arabic%2C%20Turkish%2C%20Persian"&gt;Arabic&lt;/a&gt; music, and has itself been used to tune Turkish music.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with &lt;a class="wiki_link" href="/96edo"&gt;96-edo&lt;/a&gt;), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.&lt;br /&gt;
Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/96edo"&gt;96-edo&lt;/a&gt;), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
72-tone equal temperament approximates &lt;a class="wiki_link" href="/11-limit"&gt;11-limit just intonation&lt;/a&gt; exceptionally well, is consistent in the &lt;a class="wiki_link" href="/17-limit"&gt;17-limit&lt;/a&gt;, and is the ninth &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists"&gt;Zeta integral tuning&lt;/a&gt;. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.&lt;br /&gt;
72-tone equal temperament approximates &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/11-limit"&gt;11-limit just intonation&lt;/a&gt; exceptionally well, is consistent in the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/17-limit"&gt;17-limit&lt;/a&gt;, and is the ninth &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists"&gt;Zeta integral tuning&lt;/a&gt;. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
72 is an excellent tuning for &lt;a class="wiki_link" href="/Gamelismic%20clan"&gt;miracle temperament&lt;/a&gt;, especially the 11-limit version, and the related rank three temperament &lt;a class="wiki_link" href="/Marvel%20family#Prodigy"&gt;prodigy&lt;/a&gt;, and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.&lt;br /&gt;
72 is an excellent tuning for &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Gamelismic%20clan"&gt;miracle temperament&lt;/a&gt;, especially the 11-limit version, and the related rank three temperament &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Marvel%20family#Prodigy"&gt;prodigy&lt;/a&gt;, and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Harmonic Scale"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Harmonic Scale&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Harmonic Scale"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Harmonic Scale&lt;/h1&gt;
  Mode 8 of the harmonic series -- &lt;a class="wiki_link" href="/overtone%20scales"&gt;overtones 8 through 16&lt;/a&gt;, octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).&lt;br /&gt;
  Mode 8 of the harmonic series -- &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/overtone%20scales"&gt;overtones 8 through 16&lt;/a&gt;, octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;


Line 721: Line 721:
         &lt;td&gt;366.667&lt;br /&gt;
         &lt;td&gt;366.667&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;16/13, 21/17, 26/21&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 945: Line 945:
         &lt;td&gt;833.333&lt;br /&gt;
         &lt;td&gt;833.333&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;13/8, 21/13, 34/21&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,144: Line 1,144:
         &lt;td&gt;1\72&lt;br /&gt;
         &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/quincy"&gt;quincy&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/quincy"&gt;quincy&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,160: Line 1,160:
         &lt;td&gt;7\72&lt;br /&gt;
         &lt;td&gt;7\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/miracle"&gt;miracle&lt;/a&gt;/benediction/manna&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/miracle"&gt;miracle&lt;/a&gt;/benediction/manna&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,184: Line 1,184:
         &lt;td&gt;17\72&lt;br /&gt;
         &lt;td&gt;17\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/neominor"&gt;neominor&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/neominor"&gt;neominor&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,192: Line 1,192:
         &lt;td&gt;19\72&lt;br /&gt;
         &lt;td&gt;19\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/catakleismic"&gt;catakleismic&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/catakleismic"&gt;catakleismic&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,208: Line 1,208:
         &lt;td&gt;25\72&lt;br /&gt;
         &lt;td&gt;25\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/sqrtphi"&gt;sqrtphi&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/sqrtphi"&gt;sqrtphi&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,224: Line 1,224:
         &lt;td&gt;31\72&lt;br /&gt;
         &lt;td&gt;31\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/marvo"&gt;marvo&lt;/a&gt;/zarvo&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/marvo"&gt;marvo&lt;/a&gt;/zarvo&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,232: Line 1,232:
         &lt;td&gt;35\72&lt;br /&gt;
         &lt;td&gt;35\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/cotritone"&gt;cotritone&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cotritone"&gt;cotritone&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,248: Line 1,248:
         &lt;td&gt;5\72&lt;br /&gt;
         &lt;td&gt;5\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/harry"&gt;harry&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/harry"&gt;harry&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,264: Line 1,264:
         &lt;td&gt;11\72&lt;br /&gt;
         &lt;td&gt;11\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/unidec"&gt;unidec&lt;/a&gt;/hendec&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/unidec"&gt;unidec&lt;/a&gt;/hendec&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,272: Line 1,272:
         &lt;td&gt;13\72&lt;br /&gt;
         &lt;td&gt;13\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/wizard"&gt;wizard&lt;/a&gt;/lizard/gizzard&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/wizard"&gt;wizard&lt;/a&gt;/lizard/gizzard&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,296: Line 1,296:
         &lt;td&gt;5\72&lt;br /&gt;
         &lt;td&gt;5\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/tritikleismic"&gt;tritikleismic&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/tritikleismic"&gt;tritikleismic&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,312: Line 1,312:
         &lt;td&gt;11\72&lt;br /&gt;
         &lt;td&gt;11\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/mirkat"&gt;mirkat&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/mirkat"&gt;mirkat&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,320: Line 1,320:
         &lt;td&gt;1\72&lt;br /&gt;
         &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/quadritikleismic"&gt;quadritikleismic&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/quadritikleismic"&gt;quadritikleismic&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,360: Line 1,360:
         &lt;td&gt;1\72&lt;br /&gt;
         &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/octoid"&gt;octoid&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/octoid"&gt;octoid&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,368: Line 1,368:
         &lt;td&gt;2\72&lt;br /&gt;
         &lt;td&gt;2\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/octowerck"&gt;octowerck&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/octowerck"&gt;octowerck&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,392: Line 1,392:
         &lt;td&gt;3\72&lt;br /&gt;
         &lt;td&gt;3\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/ennealimmal"&gt;ennealimmal&lt;/a&gt;/ennealimmic&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/ennealimmal"&gt;ennealimmal&lt;/a&gt;/ennealimmic&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,400: Line 1,400:
         &lt;td&gt;1\72&lt;br /&gt;
         &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/compton"&gt;compton&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/compton"&gt;compton&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,408: Line 1,408:
         &lt;td&gt;1\72&lt;br /&gt;
         &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/hemiennealimmal"&gt;hemiennealimmal&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/hemiennealimmal"&gt;hemiennealimmal&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,416: Line 1,416:
         &lt;td&gt;1\72&lt;br /&gt;
         &lt;td&gt;1\72&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="/hours"&gt;hours&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/hours"&gt;hours&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,431: Line 1,431:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Z function"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Z function&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Z function"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Z function&lt;/h1&gt;
  72edo is the ninth &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists"&gt;zeta integral edo&lt;/a&gt;, as well as being a peak and gap edo, and the maximum value of the &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#The%20Z%20function"&gt;Z function&lt;/a&gt; in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.&lt;br /&gt;
  72edo is the ninth &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists"&gt;zeta integral edo&lt;/a&gt;, as well as being a peak and gap edo, and the maximum value of the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Riemann%20Zeta%20Function%20and%20Tuning#The%20Z%20function"&gt;Z function&lt;/a&gt; in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:1277:&amp;lt;img src=&amp;quot;/file/view/plot72.png/219772696/plot72.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/plot72.png/219772696/plot72.png" alt="plot72.png" title="plot72.png" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:1277 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:1277:&amp;lt;img src=&amp;quot;http://xenharmonic.wikispaces.com/file/view/plot72.png/219772696/plot72.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="http://xenharmonic.wikispaces.com/file/view/plot72.png/219772696/plot72.png" alt="plot72.png" title="plot72.png" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:1277 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Music"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Music&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Music"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Music&lt;/h1&gt;
  &lt;a class="wiki_link_ext" href="http://www.archive.org/details/Kotekant" rel="nofollow"&gt;Kotekant&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://www.archive.org/download/Kotekant/kotekant.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="/Gene%20Ward%20Smith"&gt;Gene Ward Smith&lt;/a&gt;&lt;br /&gt;
  &lt;a class="wiki_link_ext" href="http://www.archive.org/details/Kotekant" rel="nofollow"&gt;Kotekant&lt;/a&gt; &lt;a class="wiki_link_ext" href="http://www.archive.org/download/Kotekant/kotekant.mp3" rel="nofollow"&gt;play&lt;/a&gt; by &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Gene%20Ward%20Smith"&gt;Gene Ward Smith&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-72-edo.mp3" rel="nofollow"&gt;Twinkle canon – 72 edo&lt;/a&gt; by &lt;a class="wiki_link_ext" href="http://soonlabel.com/xenharmonic/archives/573" rel="nofollow"&gt;Claudi Meneghin&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-72-edo.mp3" rel="nofollow"&gt;Twinkle canon – 72 edo&lt;/a&gt; by &lt;a class="wiki_link_ext" href="http://soonlabel.com/xenharmonic/archives/573" rel="nofollow"&gt;Claudi Meneghin&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Scales&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Scales&lt;/h1&gt;
&lt;a class="wiki_link" href="/smithgw72a"&gt;smithgw72a&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72b"&gt;smithgw72b&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72c"&gt;smithgw72c&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72d"&gt;smithgw72d&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72e"&gt;smithgw72e&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72f"&gt;smithgw72f&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72g"&gt;smithgw72g&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72h"&gt;smithgw72h&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72i"&gt;smithgw72i&lt;/a&gt;, &lt;a class="wiki_link" href="/smithgw72j"&gt;smithgw72j&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/smithgw72a"&gt;smithgw72a&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/smithgw72b"&gt;smithgw72b&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/smithgw72c"&gt;smithgw72c&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/smithgw72d"&gt;smithgw72d&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/smithgw72e"&gt;smithgw72e&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/smithgw72f"&gt;smithgw72f&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/smithgw72g"&gt;smithgw72g&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/smithgw72h"&gt;smithgw72h&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/smithgw72i"&gt;smithgw72i&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/smithgw72j"&gt;smithgw72j&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/blackjack"&gt;blackjack&lt;/a&gt;, &lt;a class="wiki_link" href="/miracle_8"&gt;miracle_8&lt;/a&gt;, &lt;a class="wiki_link" href="/miracle_10"&gt;miracle_10&lt;/a&gt;, &lt;a class="wiki_link" href="/miracle_12"&gt;miracle_12&lt;/a&gt;, &lt;a class="wiki_link" href="/miracle_12a"&gt;miracle_12a&lt;/a&gt;, &lt;a class="wiki_link" href="/miracle_24hi"&gt;miracle_24hi&lt;/a&gt;, &lt;a class="wiki_link" href="/miracle_24lo"&gt;miracle_24lo&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/blackjack"&gt;blackjack&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/miracle_8"&gt;miracle_8&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/miracle_10"&gt;miracle_10&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/miracle_12"&gt;miracle_12&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/miracle_12a"&gt;miracle_12a&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/miracle_24hi"&gt;miracle_24hi&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/miracle_24lo"&gt;miracle_24lo&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/keenanmarvel"&gt;keenanmarvel&lt;/a&gt;, &lt;a class="wiki_link" href="/xenakis_chrome"&gt;xenakis_chrome&lt;/a&gt;, &lt;a class="wiki_link" href="/xenakis_diat"&gt;xenakis_diat&lt;/a&gt;, &lt;a class="wiki_link" href="/xenakis_schrome"&gt;xenakis_schrome&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/keenanmarvel"&gt;keenanmarvel&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/xenakis_chrome"&gt;xenakis_chrome&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/xenakis_diat"&gt;xenakis_diat&lt;/a&gt;, &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/xenakis_schrome"&gt;xenakis_schrome&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/genus24255et72"&gt;Euler(24255) genus in 72 equal&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/genus24255et72"&gt;Euler(24255) genus in 72 equal&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="External links"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;External links&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="External links"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;External links&lt;/h1&gt;
  &lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/72_tone_equal_temperament" rel="nofollow"&gt;Wikipedia article on 72edo&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://orthodoxwiki.org/Byzantine_Chant" rel="nofollow"&gt;OrthodoxWiki Article on Byzantine chant, which uses 72edo&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Joe_Maneri" rel="nofollow"&gt;Wikipedia article on Joe Maneri (1927-2009)&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://www.ekmelic-music.org/en/index.htmmusik/" rel="nofollow"&gt;Ekmelic Music Society/Gesellschaft für Ekmelische Musik&lt;/a&gt;, a group of composers and researchers dedicated to 72edo music&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://sonic-arts.org/tagawa/72edo.htm" rel="nofollow"&gt;Rick Tagawa's 72edo site&lt;/a&gt;, including theory and composers' list&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://soundcloud.com/dawiertx" rel="nofollow"&gt;Danny Wier, composer and musician who specializes in 72-edo&lt;/a&gt;&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
  &lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/72_tone_equal_temperament" rel="nofollow"&gt;Wikipedia article on 72edo&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://orthodoxwiki.org/Byzantine_Chant" rel="nofollow"&gt;OrthodoxWiki Article on Byzantine chant, which uses 72edo&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Joe_Maneri" rel="nofollow"&gt;Wikipedia article on Joe Maneri (1927-2009)&lt;/a&gt;&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://www.ekmelic-music.org/en/index.htmmusik/" rel="nofollow"&gt;Ekmelic Music Society/Gesellschaft für Ekmelische Musik&lt;/a&gt;, a group of composers and researchers dedicated to 72edo music&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://sonic-arts.org/tagawa/72edo.htm" rel="nofollow"&gt;Rick Tagawa's 72edo site&lt;/a&gt;, including theory and composers' list&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link_ext" href="http://soundcloud.com/dawiertx" rel="nofollow"&gt;Danny Wier, composer and musician who specializes in 72-edo&lt;/a&gt;&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>