82edo: Difference between revisions
Royalmilktea (talk | contribs) interval table |
→Instruments: Insert music section after this, starting with Bryan Deister's ''microtonal improvisation in 82edo'' (2025) |
||
(15 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
82edo's [[patent val]] is [[contorted]] in the [[11-limit]], since {{nowrap|82 {{=}} 2 × 41}}. In the [[13-limit]] the patent val tempers out [[169/168]] and [[676/675]], and in the [[17-limit]] tempers out [[273/272]]. It provides the optimal patent val for [[soothsaying]] temperament and [[support]]s [[baladic]] temperament. The 82d val tempers out [[50/49]] and is an excellent tuning for [[astrology]] and [[byhearted]], surpassing their optimal patent vals. The alternative 82e val tempers out [[121/120]] instead. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|82}} | {{Harmonics in equal|82}} | ||
== | === Subsets and supersets === | ||
[[ | 82edo contains [[2edo]] and [[41edo]] as subsets. [[164edo]], which doubles it, is a notable tuning. | ||
{| class="wikitable right- | |||
| | A step of 82edo is exactly 30 [[mina]]s. | ||
! | |||
!Cents | == Intervals == | ||
{| class="wikitable right-1 right-2 left-3 left-4 left-5" | |||
|- | |||
! rowspan="2" | # | |||
! rowspan="2" | Cents | |||
! rowspan="2" | Approximate ratios* | |||
! colspan="2" | Additional ratios | |||
|- | |||
! Using the 82e val | |||
! Using the patent val | |||
|- | |- | ||
|0 | | 0 | ||
|0.000 | | 0.000 | ||
| 1/1 | |||
| 1/1 | |||
| 1/1 | |||
|- | |- | ||
|1 | | 1 | ||
|14.634 | | 14.634 | ||
| ''65/64'', 91/90 | |||
| ''55/54'' | |||
| | |||
|- | |- | ||
|2 | | 2 | ||
|29.268 | | 29.268 | ||
| 49/48, 50/49, ''81/80'', ''126/125'' | |||
| | |||
| 45/44, 55/54 | |||
|- | |- | ||
|3 | | 3 | ||
|43.902 | | 43.902 | ||
| 40/39 | |||
| ''33/32'', ''45/44'' | |||
| | |||
|- | |- | ||
|4 | | 4 | ||
|58.537 | | 58.537 | ||
| ''25/24'', 28/27, ''36/35'' | |||
| | |||
| 33/32 | |||
|- | |- | ||
|5 | | 5 | ||
|73.171 | | 73.171 | ||
| 26/25, ''27/26'' | |||
| 22/21 | |||
| | |||
|- | |- | ||
|6 | | 6 | ||
|87.805 | | 87.805 | ||
| 19/18, 20/19, 21/20 | |||
| | |||
| ''22/21'' | |||
|- | |- | ||
|7 | | 7 | ||
|102.439 | | 102.439 | ||
| 17/16, 18/17 | |||
| | |||
| | |||
|- | |- | ||
|8 | | 8 | ||
|117.073 | | 117.073 | ||
| 15/14, 16/15 | |||
| | |||
| | |||
|- | |- | ||
|9 | | 9 | ||
|131.707 | | 131.707 | ||
| 14/13, 13/12 | |||
| | |||
| | |||
|- | |- | ||
|10 | | 10 | ||
|146.341 | | 146.341 | ||
| | |||
| | |||
| 12/11 | |||
|- | |- | ||
|11 | | 11 | ||
|160.976 | | 160.976 | ||
| | |||
| 11/10, ''12/11'' | |||
| | |||
|- | |- | ||
|12 | | 12 | ||
|175.610 | | 175.610 | ||
| 10/9, 21/19 | |||
| | |||
| ''11/10'' | |||
|- | |- | ||
|13 | | 13 | ||
|190.244 | | 190.244 | ||
| 19/17 | |||
| | |||
| | |||
|- | |- | ||
|14 | | 14 | ||
|204.878 | | 204.878 | ||
| 9/8 | |||
| | |||
| | |||
|- | |- | ||
|15 | | 15 | ||
|219.512 | | 219.512 | ||
| 17/15 | |||
| | |||
| | |||
|- | |- | ||
|16 | | 16 | ||
|234.146 | | 234.146 | ||
| 8/7 | |||
| | |||
| | |||
|- | |- | ||
|17 | | 17 | ||
|248.780 | | 248.780 | ||
| 15/13 | |||
| 22/19 | |||
| | |||
|- | |- | ||
|18 | | 18 | ||
|263.415 | | 263.415 | ||
| 7/6 | |||
| | |||
| ''22/19'' | |||
|- | |- | ||
|19 | | 19 | ||
|278.049 | | 278.049 | ||
| 20/17 | |||
| | |||
| ''13/11'' | |||
|- | |- | ||
|20 | | 20 | ||
|292.683 | | 292.683 | ||
| 19/16 | |||
| 13/11 | |||
| | |||
|- | |- | ||
|21 | | 21 | ||
|307.317 | | 307.317 | ||
| | |||
| | |||
| | |||
|- | |- | ||
|22 | | 22 | ||
|321.951 | | 321.951 | ||
| 6/5 | |||
| | |||
| | |||
|- | |- | ||
|23 | | 23 | ||
|336.585 | | 336.585 | ||
| 17/14 | |||
| ''11/9'' | |||
| | |||
|- | |- | ||
|24 | | 24 | ||
|351.220 | | 351.220 | ||
| | |||
| | |||
| 11/9 | |||
|- | |- | ||
|25 | | 25 | ||
|365.854 | | 365.854 | ||
| 16/13, 21/17, 26/21 | |||
| | |||
| | |||
|- | |- | ||
|26 | | 26 | ||
|380.488 | | 380.488 | ||
| 5/4 | |||
| | |||
| | |||
|- | |- | ||
|27 | | 27 | ||
|395.122 | | 395.122 | ||
| | |||
| | |||
| | |||
|- | |- | ||
|28 | | 28 | ||
|409.756 | | 409.756 | ||
| 19/15, 24/19 | |||
| | |||
| ''14/11'' | |||
|- | |- | ||
|29 | | 29 | ||
|424.390 | | 424.390 | ||
| | |||
| 14/11 | |||
| | |||
|- | |- | ||
|30 | | 30 | ||
|439.024 | | 439.024 | ||
| 9/7 | |||
| ''22/17'' | |||
| | |||
|- | |- | ||
|31 | | 31 | ||
|453.659 | | 453.659 | ||
| 13/10 | |||
| | |||
| 22/17 | |||
|- | |- | ||
|32 | | 32 | ||
|468.293 | | 468.293 | ||
| 17/13, 21/16 | |||
| | |||
| | |||
|- | |- | ||
|33 | | 33 | ||
|482.927 | | 482.927 | ||
| | |||
| | |||
| | |||
|- | |- | ||
|34 | | 34 | ||
|497.561 | | 497.561 | ||
| 4/3 | |||
| | |||
| | |||
|- | |- | ||
|35 | | 35 | ||
|512.195 | | 512.195 | ||
| | |||
| | |||
| | |||
|- | |- | ||
|36 | | 36 | ||
|526.829 | | 526.829 | ||
| 19/14 | |||
| | |||
| ''15/11'' | |||
|- | |- | ||
|37 | | 37 | ||
|541.463 | | 541.463 | ||
| 26/19 | |||
| ''11/8'', 15/11 | |||
| | |||
|- | |- | ||
|38 | | 38 | ||
|556.098 | | 556.098 | ||
| | |||
| | |||
| 11/8 | |||
|- | |- | ||
|39 | | 39 | ||
|570.732 | | 570.732 | ||
| ''18/13'' | |||
| | |||
| | |||
|- | |- | ||
|40 | | 40 | ||
|585.366 | | 585.366 | ||
| 7/5 | |||
| | |||
| | |||
|- | |- | ||
|41 | | 41 | ||
|600.000 | | 600.000 | ||
| 17/12, 24/17 | |||
| | |||
| | |||
|- | |- | ||
|... | | … | ||
|... | | … | ||
|} | | | ||
| | |||
| | |||
|} | |||
<nowiki />* As a no-11 19-limit temperament | |||
== Notation == | |||
=== Ups and downs notation === | |||
60edo can be notated using [[ups and downs notation]] using [[Helmholtz–Ellis]] accidentals: | |||
{{Sharpness-sharp8}} | |||
== Approximation to JI == | |||
=== Zeta peak index === | |||
{{ZPI | |||
| zpi = 448 | |||
| steps = 81.9541455954050 | |||
| step size = 14.6423343356444 | |||
| tempered height = 6.653983 | |||
| pure height = 5.154524 | |||
| integral = 0.941321 | |||
| gap = 14.718732 | |||
| octave = 1200.67141552284 | |||
| consistent = 8 | |||
| distinct = 8 | |||
}} | |||
== Instruments == | |||
* [[Lumatone mapping for 82edo]] | |||
== Music == | |||
; [[Bryan Deister]] | |||
* [https://www.youtube.com/shorts/p9xUY8EU7Zg ''microtonal improvisation in 82edo''] (2025) |