Garischismic clan: Difference between revisions
m Removing from Category:Regular temperament theory using Cat-a-lot |
m Text replacement - "Category:Temperament clans" to "Category:Temperament clans Category:Pages with mostly numerical content" |
||
(11 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Technical data page}} | |||
The '''garischismic clan''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] the [[garischisma]] ({{monzo|legend=1| 25 -14 0 -1 }}, [[ratio]]: 33554432/33480783). The head of this clan is gary, which is generated by a perfect fifth. Two apotomes i.e. 14 fifths octave reduced make a [[8/7|septimal major second (8/7)]]. Equivalently stated, the [[7/4|harmonic seventh (7/4)]] is found at the double-diminished octave (C–Cbb). | |||
* ''[[Newt]]'' | |||
* ''[[ | The second comma of the comma list determines which full 7-limit family member we are looking at. Garibaldi adds the [[schisma]], or equivalently [[225/224]] and finds 5/4 at the diminished fourth. Cotoneum adds [[10976/10935]] and finds 5/4 at the septuple-diminished octave. These are generated by the fifth as is gary. | ||
* ''[[ | |||
* ''[[ | Newt adds [[2401/2400]], slicing the fifth in two. Sextile adds [[250047/250000]] with a 1/3-octave period. Alphatrident adds [[6144/6125]], slicing the twelfth in three. Satin adds [[2100875/2097152]], slicing the fourth in three. Vulture adds [[4375/4374]], slicing the twelfth in four. World calendar adds [[390625/388962]] with a 1/4-octave period as well as a bisect generator. Quintagar adds [[3136/3125]], slicing the fourth in five. Paramity adds [[65625/65536]], slicing the eleventh in five. | ||
* ''[[ | Temperaments discussed elsewhere are: | ||
* ''[[ | * [[Garibaldi]] → [[Schismatic family #Garibaldi|Schismatic family]] (+225/224) | ||
* ''[[ | * ''[[Newt]]'' → [[Breedsmic temperaments #Newt|Breedsmic temperaments]] (+2401/2400) | ||
* ''[[ | * ''[[Sextile]]'' → [[Landscape microtemperaments #Sextile|Landscape microtemperaments]] (+250047/250000) | ||
* ''[[Satin]]'' → [[Canousmic temperaments #Satin|Canousmic temperaments]] (+2100875/2097152) | |||
* ''[[Alphatrident]]'' → [[Alphatricot family #Alphatrident|Alphatricot family]] (+6144/6125) | |||
* ''[[Vulture]]'' → [[Vulture family #Vulture|Vulture family]] (+4375/4374) | |||
* ''[[Quintagar]]'' → [[Quindromeda family #Quintagar|Quindromeda family]] (+3136/3125) | |||
* ''[[Paramity]]'' → [[Amity family #Paramity|Amity family]] (+65625/65536) | |||
* ''[[Garistearn]]'' → [[Stearnsmic clan #Garistearn|Stearnsmic clan]] (+118098/117649) | |||
Considered below are cotoneum and world calendar. | |||
== Gary == | == Gary == | ||
Subgroup: 2.3.7 | [[Subgroup]]: 2.3.7 | ||
[[Comma list]]: 33554432/33480783 | [[Comma list]]: 33554432/33480783 | ||
{{Mapping|legend=2| 1 0 25 | 0 1 -14 }} | |||
: sval mapping generators: ~2, ~3 | |||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 702.2079 | ||
{{ | {{Optimal ET sequence|legend=1| 12, 29, 41, 94, 135, 364, 499, 634, 3035bd, 3669bd, 4303bd, 4937bbdd, 5571bbdd }} | ||
[[Badness]]: 0.0135 | [[Badness]]: 0.0135 | ||
=== 2.3.7.11 === | === 2.3.7.11 subgroup === | ||
Subgroup: 2.3.7.11 | Subgroup: 2.3.7.11 | ||
Comma list: 19712/19683, 41503/41472 | Comma list: 19712/19683, 41503/41472 | ||
Sval mapping: | Sval mapping: {{mapping| 1 0 25 -33 | 0 1 -14 23 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.2292 | ||
{{Optimal ET sequence|legend=1| 12e, 41, 94, 135, 716, 851, 986, 1121, 1256 }} | |||
Badness: 0.00731 | Badness: 0.00731 | ||
== Cotoneum == | |||
{{Main| Cotoneum }} | |||
The cotoneum temperament tempers out 10976/10935 ([[hemimage comma]]), and 823543/819200 ([[quince comma]]) in addition to the garischisma. This temperament can be described as 41 & 217, and is supported by [[176edo|176-]], [[217edo|217-]], and [[258edo]]. 5/4 is found at the septuple diminished octave (C-Cbbbbbbb) or equivalently at the perfect fourth minus four Pyth. commas. It can be extended to the 11-, 13-, 17-, and 19-limit by adding 441/440, 364/363, 595/594, and 343/342 to the comma list in this order. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 10976/10935, 823543/819200 | |||
{{Mapping|legend=1| 1 0 80 25 | 0 1 -49 -14 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 702.317 | |||
{{Optimal ET sequence|legend=1| 41, 135c, 176, 217, 258, 475 }} | |||
[[Badness]]: 0.105632 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 441/440, 10976/10935, 16384/16335 | |||
Mapping: {{mapping| 1 0 80 25 -33 | 0 1 -49 -14 23 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.303 | |||
{{Optimal ET sequence|legend=1| 41, 135c, 176, 217 }} | |||
Badness: 0.050966 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 364/363, 441/440, 3584/3575, 10976/10935 | |||
Mapping: {{mapping| 1 0 80 25 -33 -93 | 0 1 -49 -14 23 61 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.306 | |||
{{Optimal ET sequence|legend=1| 41, 176, 217 }} | |||
Badness: 0.036951 | |||
=== 17-limit === | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 364/363, 441/440, 595/594, 3584/3575, 8281/8262 | |||
Mapping: {{mapping| 1 0 80 25 -33 -93 -137 | 0 1 -49 -14 23 61 89 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.307 | |||
{{Optimal ET sequence|legend=1| 41, 176, 217 }} | |||
Badness: 0.029495 | |||
=== 19-limit === | |||
Subgroup: 2.3.5.7.11.13.17.19 | |||
Comma list: 343/342, 364/363, 441/440, 595/594, 1216/1215, 1729/1728 | |||
Mapping: {{mapping| 1 0 80 25 -33 -93 -137 74 | 0 1 -49 -14 23 61 89 -44 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.308 | |||
{{Optimal ET sequence|legend=1| 41, 176, 217 }} | |||
Badness: 0.021811 | |||
== World calendar == | |||
World calendar tempers out the [[dimcomp comma]] and the garischisma, and can be described as the 12 & 364 temperament. The name derives from a [[wikipedia: World Calendar|certain calendar layout]] by the same name. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 390625/388962, 33554432/33480783 | |||
{{Mapping|legend=1| 4 1 -44 86 | 0 2 -13 -28 }} | |||
: mapping generators: ~25/21, ~91125/57344 | |||
[[Optimal tuning]] ([[POTE]]): ~25/21 = 1\4, ~91125/57344 = 801.0947 | |||
{{Optimal ET sequence|legend=1| 12, …, 352, 364 }} | |||
[[Badness]]: 0.292 | |||
=== 2.3.5.7.17 subgroup === | |||
Subgroup: 2.3.5.7.17 | |||
Comma list: 2025/2023, 24576/24565, 390625/388962 | |||
Sval mapping: {{mapping| 4 1 -44 86 3 | 0 2 -13 -28 5 }} | |||
Optimal tuning (POTE): ~25/21 = 1\4, ~27/17 = 801.0908 | |||
{{Optimal ET sequence|legend=1| 12, …, 352, 364 }} | |||
Badness: 0.0743 | |||
=== 2.3.5.7.17.19 subgroup === | |||
Subgroup: 2.3.5.7.17.19 | |||
Comma list: 1216/1215, 2025/2023, 8075/8064, 48013/48000 | |||
Sval mapping: {{mapping| 4 1 -44 86 3 25 | 0 2 -13 -28 5 -3 }} | |||
Optimal tuning (POTE): ~25/21 = 1\4, ~27/17 = 801.0945 | |||
{{Optimal ET sequence|legend=1| 12, …, 352, 364 }} | |||
Badness: 0.0378 | |||
[[Category:Temperament clans]] | [[Category:Temperament clans]] | ||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Garischismic clan| ]] <!-- main article --> | [[Category:Garischismic clan| ]] <!-- main article --> | ||
[[Category:Rank 2]] | [[Category:Rank 2]] |