3L 4s: Difference between revisions

Wikispaces>Andrew_Heathwaite
**Imported revision 101164205 - Original comment: added 3g & 4g**
ArrowHead294 (talk | contribs)
 
(98 intermediate revisions by 22 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox MOS
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| Name = mosh
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2009-11-08 22:28:05 UTC</tt>.<br>
| Periods = 1
: The original revision id was <tt>101164205</tt>.<br>
| nLargeSteps = 3
: The revision comment was: <tt>added 3g & 4g</tt><br>
| nSmallSteps = 4
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| Equalized = 2
<h4>Original Wikitext content:</h4>
| Collapsed = 1
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=3L 4s - "mosh"=  
| Pattern = LsLsLss
}}
{{MOS intro}}


MOS scales of this form are built from a generator that falls between 1\3 (one degree of [[3edo]] - 400 cents) and 2\7 (two degrees of [[7edo]] - 343 cents.
== Name ==
[[TAMNAMS]] suggests the temperament-agnostic name '''mosh''' for this scale, adopted from an older [[Graham Breed's MOS naming scheme|mos naming scheme]] by [[Graham Breed]]. The name is a contraction of "mohajira-ish".


It has the form s L s L s L s and its various "modes" are:
== Scale properties ==
{{TAMNAMS use}}


s L s L s L s
=== Intervals ===
L s L s L s s
{{MOS intervals}}
s L s L s s L
L s L s s L s
s L s s L s L
L s s L s L s
s s L s L s L


One can build a continuum of equal-tempered scales between 1\3 and 2\7 by taking "freshman sums," adding together the numerators, then adding together the denominators.
=== Generator chain ===
{{MOS genchain}}


&lt;span style="-webkit-border-horizontal-spacing: 2px; -webkit-border-vertical-spacing: 2px; border-collapse: collapse;"&gt;
=== Modes ===
&lt;/span&gt;
{{MOS mode degrees}}
||||||||||~ generator || g || 2g || 3g || 4g (-1200) ||
|| 1\3 ||  ||  ||  ||  || 400.000 || 800.000 || 1200.000 || 400.000 ||  ||
||  ||  ||  ||  || 6\19 || 378.947 || 757.895 || 1136.842 || 315.789 ||  ||
||  ||  ||  || 5\16 ||  || 375.000 || 750.000 || 1125.000 || 300.000 ||  ||
||  ||  ||  ||  || 9\29 || 372.414 || 744.828 || 1117.241 || 289.655 ||  ||
||  ||  || 4\13 ||  ||  || 369.231 || 738.462 || 1107.692 || 276.923 ||  ||
||  ||  ||  ||  || 11\36 || 366.667 || 733.333 || 1100.000 || 266.667 ||  ||
||  ||  ||  || 7\23 ||  || 365.217 || 730.435 || 1095.652 || 260.870 ||  ||
||  ||  ||  ||  || 10\33 || 363.636 || 727.272 || 1090.909 || 254.545 ||  ||
||  || 3\10 ||  ||  ||  || 360.000 || 720.000 || 1080.000 || 240.000 ||  ||
||  ||  ||  ||  || 11\37 || 356.757 || 713.514 || 1080.270 || 227.027 ||  ||
||  ||  ||  || 8\27 ||  || 355.556 || 711.111 || 1066.667 || 222.222 ||  ||
||  ||  ||  ||  || 13\44 || 354.545 || 709.091 || 1063.636 || 218.182 ||  ||
||  ||  || 5\17 ||  ||  || 352.941 || 705.882 || 1058.824 || 211.765 ||  ||
||  ||  ||  ||  || 12\41 || 351.220 || 702.439 || 1053.659 || 204.878 ||  ||
||  ||  ||  || 7\24 ||  || 350.000 || 700.000 || 1050.000 || 200.000 ||  ||
||  ||  ||  ||  || 9\31 || 348.387 || 696.774 || 1045.161 || 193.548 ||  ||
|| 2\7 ||  ||  ||  ||  || 342.847 || 685.714 || 1028.571 || 171.429 ||  ||


3\10 on this chart represents a dividing line between what I call "neutral scales" on the bottom (eg. [[17edo neutral scale]]), and something else I don't have a name for yet on the top, with [[10edo]] standing in between. MOS-wise, the neutral scales, after three more generations, make MOS [[7L 3s]] ("unfair mosh"); the other scales make MOS [[3L 7s]] ("fair mosh").
=== Proposed names ===
The first set of mode nicknames was coined by [[Andrew Heathwaite]]. The other set was coined by [[User:CellularAutomaton|CellularAutomaton]] and follows the diatonic modes' naming convention by using ancient Greek toponyms that sound similar to Heathwaite's names. The third shows which modes are a mixture of which diatonic modes, as discussed in [[#Theory]].
{{MOS modes
| Table Headers=
Mode names<br>(Heathwaite) $
Mode names<br>(CA) $
Mixed diatonic<br>modes $
| Table Entries=
Dril $
Dalmatian $
Dorian + Lydian $
Gil $
Galatian $
Aeolian + Lydian $
Kleeth $
Cilician $
Aeolian + Ionian $
Bish $
Bithynian $
Phrygian + Ionian $
Fish $
Pisidian $
Phrygian + Mixolydian $
Jwl $
Illyrian $
Locrian + Mixolydian $
Led $
Lycian $
Locrian + Dorian $
}}


In "neural scale territory," the generators are all "neutral thirds," and two of them make an approximation of the "perfect fifth." Additionally, the L of the scale is somewhere around a "whole tone" and the s of the scale is somewhere around a "neutral tone".
== Theory ==
Mosh can be thought of as a midpoint between two diatonic scales which are two cyclic orders away from each other. For example, sLsLsLs is the midpoint between the Ionian (major, LLsLLLs) and Phrygian (sLLLsLL) modes. You can prove this by simple addition:


In the as-yet unnamed northern territory, the generators are major thirds (including some very flat ones), and two generators are definitely sharp of a perfect fifth. L ranges from a "supermajor second" to a "major third" and s is a "semitone" or smaller.</pre></div>
<pre>
<h4>Original HTML content:</h4>
  2 2 1 2 2 2 1 (LLsLLLs)
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;3L 4s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x3L 4s - &amp;quot;mosh&amp;quot;"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;3L 4s - &amp;quot;mosh&amp;quot;&lt;/h1&gt;
+ 1 2 2 2 1 2 2 (sLLLsLL)
&lt;br /&gt;
= 3 4 3 4 3 4 3 (sLsLsLs)
MOS scales of this form are built from a generator that falls between 1\3 (one degree of &lt;a class="wiki_link" href="/3edo"&gt;3edo&lt;/a&gt; - 400 cents) and 2\7 (two degrees of &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt; - 343 cents.&lt;br /&gt;
</pre>
&lt;br /&gt;
The rest of the equivalencies are listed in [[#Proposed names]].  
It has the form s L s L s L s and its various &amp;quot;modes&amp;quot; are:&lt;br /&gt;
&lt;br /&gt;
s L s L s L s&lt;br /&gt;
L s L s L s s&lt;br /&gt;
s L s L s s L&lt;br /&gt;
L s L s s L s&lt;br /&gt;
s L s s L s L&lt;br /&gt;
L s s L s L s&lt;br /&gt;
s s L s L s L&lt;br /&gt;
&lt;br /&gt;
One can build a continuum of equal-tempered scales between 1\3 and 2\7 by taking &amp;quot;freshman sums,&amp;quot; adding together the numerators, then adding together the denominators.&lt;br /&gt;
&lt;br /&gt;
&lt;span style="-webkit-border-horizontal-spacing: 2px; -webkit-border-vertical-spacing: 2px; border-collapse: collapse;"&gt;&lt;br /&gt;
&lt;/span&gt;&lt;br /&gt;


=== Low harmonic entropy scales ===
There are two notable harmonic entropy minima:


&lt;table class="wiki_table"&gt;
* [[Neutral third scales]], such as dicot, hemififth, and mohajira, in which the generator is a neutral third (around 350{{c}}) and two of them make a 3/2 (702{{c}}).
    &lt;tr&gt;
* [[Magic]], in which the generator is 5/4 (386{{c}}) and five of them make a 3/1 (1902{{c}}), though the step ratios in this range are very hard to the point of being lopsided.
        &lt;th colspan="5"&gt;generator&lt;br /&gt;
&lt;/th&gt;
        &lt;td&gt;g&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2g&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3g&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4g (-1200)&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1\3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;400.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;800.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;400.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6\19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;378.947&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;757.895&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1136.842&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;315.789&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;375.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;750.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1125.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;300.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9\29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;372.414&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;744.828&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1117.241&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;289.655&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4\13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;369.231&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;738.462&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1107.692&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;276.923&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11\36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;366.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;733.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1100.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;266.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;365.217&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;730.435&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1095.652&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;260.870&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10\33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;363.636&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;727.272&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1090.909&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;254.545&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3\10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;360.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;720.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1080.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;240.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;356.757&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;713.514&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1080.270&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;227.027&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8\27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;355.556&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;711.111&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1066.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;222.222&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13\44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;354.545&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;709.091&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1063.636&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;218.182&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;352.941&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;705.882&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1058.824&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;211.765&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12\41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;351.220&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;702.439&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1053.659&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;204.878&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;350.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;700.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1050.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;200.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9\31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;348.387&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;696.774&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1045.161&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;193.548&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2\7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;342.847&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;685.714&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1028.571&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;171.429&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
== Tuning ranges ==
3\10 on this chart represents a dividing line between what I call &amp;quot;neutral scales&amp;quot; on the bottom (eg. &lt;a class="wiki_link" href="/17edo%20neutral%20scale"&gt;17edo neutral scale&lt;/a&gt;), and something else I don't have a name for yet on the top, with &lt;a class="wiki_link" href="/10edo"&gt;10edo&lt;/a&gt; standing in between. MOS-wise, the neutral scales, after three more generations, make MOS &lt;a class="wiki_link" href="/7L%203s"&gt;7L 3s&lt;/a&gt; (&amp;quot;unfair mosh&amp;quot;); the other scales make MOS &lt;a class="wiki_link" href="/3L%207s"&gt;3L 7s&lt;/a&gt; (&amp;quot;fair mosh&amp;quot;).&lt;br /&gt;
3\10 represents a dividing line between "neutral third scales" on the bottom (eg. 17edo neutral scale), and scales generated by submajor and major thirds at the top, with 10edo standing in between. The neutral third scales, after three more generators, make mos [[7L&nbsp;3s]] (dicoid); the other scales make mos [[3L&nbsp;7s]] (sephiroid).
&lt;br /&gt;
 
In &amp;quot;neural scale territory,&amp;quot; the generators are all &amp;quot;neutral thirds,&amp;quot; and two of them make an approximation of the &amp;quot;perfect fifth.&amp;quot; Additionally, the L of the scale is somewhere around a &amp;quot;whole tone&amp;quot; and the s of the scale is somewhere around a &amp;quot;neutral tone&amp;quot;.&lt;br /&gt;
In dicoid, the generators are all "neutral thirds," and two of them make an approximation of the "perfect fifth." Additionally, the L of the scale is somewhere around a "whole tone" and the s of the scale is somewhere around a "neutral tone".
&lt;br /&gt;
 
In the as-yet unnamed northern territory, the generators are major thirds (including some very flat ones), and two generators are definitely sharp of a perfect fifth. L ranges from a &amp;quot;supermajor second&amp;quot; to a &amp;quot;major third&amp;quot; and s is a &amp;quot;semitone&amp;quot; or smaller.&lt;/body&gt;&lt;/html&gt;</pre></div>
In sephiroid, the generators are major thirds (including some very flat ones), and two generators are definitely sharp of a perfect fifth. L ranges from a "supermajor second" to a "major third" and s is a "semitone" or smaller.
 
=== Ultrasoft ===
[[Ultrasoft]] mosh tunings have step ratios that are less than 4:3, which implies a generator flatter than {{nowrap| 7\24 {{=}} 350{{c}} }}.
 
Ultrasoft mosh can be considered "meantone mosh". This is because the large step is a "meantone" in these tunings, somewhere between near-10/9 (as in [[38edo]]) and near-9/8 (as in [[24edo]]).
 
Ultrasoft mosh edos include [[24edo]], [[31edo]], [[38edo]], and [[55edo]].
* [[24edo]] can be used to make large and small steps more distinct (the step ratio is 4/3), or for its nearly pure 3/2.
* [[38edo]] can be used to tune the diminished and perfect mosthirds near [[6/5]] and [[11/9]], respectively.
 
These identifications are associated with [[mohajira]] temperament.
 
The sizes of the generator, large step and small step of mosh are as follows in various ultrasoft mosh tunings.
{| class="wikitable right-2 right-3 right-4 right-5 right-6 right-7"
|-
!
! [[24edo]] (supersoft)
! [[31edo]]
! [[38edo]]
! [[55edo]]
! JI intervals represented
|-
| generator (g)
| 7\24, 350.00
| 9\31, 348.39
| 11\38, 347.37
| 16\55, 349.09
| [[11/9]]
|-
| L ({{nowrap| 4g − octave }})
| 4\24, 200.00
| 5\31, 193.55
| 6\38, 189.47
| 9\55, 196.36
| [[9/8]], [[10/9]]
|-
| s ({{nowrap| octave − 3g }})
| 3\24, 150.00
| 4\31, 154.84
| 5\38, 157.89
| 7\55, 152.72
| [[11/10]], [[12/11]]
|}
 
=== Quasisoft ===
Quasisoft tunings of mosh have a step ratio between 3/2 and 5/3, implying a generator sharper than {{nowrap| 5\17 {{=}} 352.94{{c}} }} and flatter than {{nowrap| 8\27 {{=}} 355.56{{c}} }}.
 
The large step is a sharper major second in these tunings than in ultrasoft tunings. These tunings could be considered "parapyth mosh" or "archy mosh", in analogy to ultrasoft mosh being meantone mosh.
 
These identifications are associated with [[beatles]] and [[suhajira]] temperaments.
{| class="wikitable right-2 right-3 right-4 right-5"
|-
!
! [[17edo]] (soft)
! [[27edo]] (semisoft)
! [[44edo]]
! JI intervals represented
|-
| generator (g)
| 5\17, 352.94
| 8\27, 355.56
| 13\44, 354.55
| 16/13, 11/9
|-
| L ({{nowrap| 4g − octave }})
| 3\17, 211.76
| 5\27, 222.22
| 8\44, 218.18
| 9/8, 8/7
|-
| s ({{nowrap| octave − 3g }})
| 2\17, 141.18
| 3\27, 133.33
| 5\44, 137.37
| 12/11, 13/12, 14/13
|}
 
=== Hypohard ===
Hypohard tunings of mosh have a step ratio between 2 and 3, implying a generator sharper than {{nowrap| 3\10 {{=}} 360{{c}} }} and flatter than {{nowrap| 4\13 {{=}} 369.23{{c}} }}.
 
The large step ranges from a semifourth to a subminor third in these tunings. The small step is now clearly a semitone, ranging from 1\10 (120{{c}}) to 1\13 (92.31{{c}}).
 
The symmetric mode sLsLsLs becomes a distorted double harmonic major in these tunings.
 
This range is associated with [[sephiroth]] temperament.
{| class="wikitable right-2 right-3 right-4 right-5"
|-
!
! [[10edo]] (basic)
! [[13edo]] (hard)
! [[23edo]] (semihard)
|-
| generator (g)
| 3\10, 360.00
| 4\13, 369.23
| 7\23, 365.22
|-
| L ({{nowrap| 4g − octave }})
| 2\10, 240.00
| 3\13, 276.92
| 5\23, 260.87
|-
| s ({{nowrap| octave − 3g }})
| 1\10, 120.00
| 1\13, 92.31
| 2\23, 104.35
|}
 
=== Ultrahard ===
Ultra tunings of mosh have a step ratio greater than 4/1, implying a generator sharper than {{nowrap| 5\16 {{=}} 375{{c}} }}. The generator is thus near a [[5/4]] major third, five of which add up to an approximate [[3/1]]. The 7-note mos only has two perfect fifths, so extending the chain to bigger mosses, such as the [[3L&nbsp;7s]] 10-note mos, is suggested for getting 5-limit harmony.
 
This range is associated with [[magic]] temperament.
{| class="wikitable right-2 right-3 right-4 right-5 right-6"
|-
!
! [[16edo]] (superhard)
! [[19edo]]
! [[22edo]]
! [[41edo]]
! JI intervals represented
|-
| generator (g)
| 5\16, 375.00
| 6\19, 378.95
| 7\22, 381.82
| 13\41, 380.49
| 5/4
|-
| L ({{nowrap| 4g − octave }})
| 4\16, 300.00
| 5\19, 315.79
| 6\22, 327.27
| 11\41, 321.95
| 6/5
|-
| s ({{nowrap| octave − 3g }})
| 1\16, 75.00
| 1\19, 63.16
| 1\22, 54.54
| 2\41, 58.54
| 25/24
|}
 
== Scales ==
* [[Mohaha7]] – 38\131 tuning
* [[Neutral7]] – 111\380 tuning
* [[Namo7]] – 128\437 tuning
* [[Rastgross1]] – POTE tuning of [[namo]]
* [[Hemif7]] – 17\58 tuning
* [[Suhajira7]] – POTE tuning of [[suhajira]]
* [[Sephiroth7]] – 9\29 tuning
* [[Magic7]] – 46\145 tuning
 
== Scale tree ==
Generator ranges:
* Chroma-positive generator: 342.8571{{c}} (2\7) to 400.0000{{c}} (1\3)
* Chroma-negative generator: 800.0000{{c}} (2\3) to 857.1429{{c}} (5\7)
{{MOS tuning spectrum
| 6/5 = [[Mohaha]] / ptolemy&nbsp;
| 5/4 = Mohaha / migration / [[mohajira]]
| 11/8 = Mohaha / mohamaq
| 7/5 = Mohaha / [[neutrominant]]
| 10/7 = [[Hemif]] / [[hemififths]]
| 11/7 = [[Suhajira]]
| 13/8 = Golden suhajira (354.8232{{c}})
| 5/3 = Suhajira / [[ringo]]
| 12/7 = [[Beatles]]
| 13/5 = Unnamed golden tuning (366.2564{{c}})
| 7/2 = [[Sephiroth]]
| 9/2 = [[Muggles]]
| 5/1 = [[Magic]]
| 6/1 = [[Würschmidt]]&nbsp;
}}
 
[[Category:Mosh]]
[[Category:7-tone scales]]