39edt: Difference between revisions
Wikispaces>genewardsmith **Imported revision 250636156 - Original comment: ** |
→Music: Added my song Polygonal. |
||
(39 intermediate revisions by 12 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} It is also known as the '''Triple Bohlen–Pierce scale''' ('''Triple BP'''), since it divides each step of the equal-tempered [[Bohlen–Pierce]] scale ([[13edt]]) into three equal parts. | |||
39edt can be described as approximately 24.606[[edo]]. This implies that each step of 39edt can be approximated by 5 steps of [[123edo]]. 39edt contains within it a close approximation of [[4ed11/5]]: every seventh step of 39edt equates to a step of 4ed11/5. | |||
: | |||
== Theory == | |||
It is a strong no-twos 13-limit system, a fact first noted by [[Paul Erlich]]; in fact it has a better no-twos 13-[[odd limit]] relative error than any other edt up to [[914edt]]. Like [[26edt]] and [[52edt]], it is a multiple of 13edt and so contains the Bohlen-Pierce scale, being [[contorted]] in the no-twos 7-limit, tempering out the same BP commas, [[245/243]] and [[3125/3087]], as 13edt. In the [[11-limit]] it tempers out [[1331/1323]] and in the [[13-limit]] [[275/273]], [[1575/1573]], and [[847/845]]. An efficient traversal is therefore given by [[Mintra]] temperament, which in the 13-limit tempers out 275/273 and 1331/1323 alongside 245/243, and is generated by the interval of [[11/7]], which serves as a [[macrodiatonic]] "superpyth" fourth and splits the [[BPS]] generator of [[9/7]], up a tritave, in three. | |||
</ | If octaves are inserted, 39edt is related to the {{nowrap|49f & 172f}} temperament in the full 13-limit, known as [[Sensamagic clan#Triboh|triboh]], tempering out 245/243, 275/273, 847/845 and 1575/1573, which has mapping [{{val|1 0 0 0 0 0}}, {{val|0 39 57 69 85 91}}]. This has a POTE generator which is an approximate 77/75 of 48.822 cents. 39edt is the ninth [[The Riemann zeta function and tuning#Removing primes|no-twos zeta peak edt]]. | ||
< | |||
< | When treated as an octave-repeating tuning with the sharp octave of 25 steps (about 1219 cents), and the other primes chosen by their best octave-reduced mappings, it functions as a tuning of [[mavila]] temperament, analogous to [[25edo]]'s mavila. | ||
Mavila is one of the few places where octave-stretching makes sense, due to how flat the fifth and often the major third are; this fifth of 683 cents is much more recognizable as a perfect fifth of 3/2 than the 672-cent tuning with just octaves. | |||
{{Harmonics in equal|39|3|1|intervals=prime|columns=12}} | |||
== Intervals == | |||
All intervals shown are within the 91-[[odd limit#Nonoctave equaves|throdd limit]] and are consistently represented. | |||
{| class="wikitable center-all right-2 right-3" | |||
|- | |||
! Steps | |||
! [[Cent]]s | |||
! [[Hekt]]s | |||
! [[4L 5s (3/1-equivalent)|Enneatonic]]<br />degree | |||
! Corresponding 3.5.7.11.13 subgroup<br />intervals | |||
! [[Lambda ups and downs notation|Lambda]]<br />(sLsLsLsLs,<br />{{nowrap|J {{=}} 1/1}}) | |||
! Mintaka[7]<br />(E macro-Phrygian) | |||
|- | |||
| 0 | |||
| 0 | |||
| 0 | |||
| P1 | |||
| [[1/1]] | |||
| J | |||
| E | |||
|- | |||
| 1 | |||
| 48.8 | |||
| 33.3 | |||
| SP1 | |||
| [[77/75]] (+3.2¢); [[65/63]] (−5.3¢) | |||
| ^J | |||
| ^E, vF | |||
|- | |||
| 2 | |||
| 97.5 | |||
| 66.7 | |||
| sA1/sm2 | |||
| [[35/33]] (−4.3¢); [[81/77]] (+9.9¢) | |||
| vK | |||
| F | |||
|- | |||
| 3 | |||
| 146.3 | |||
| 100 | |||
| A1/m2 | |||
| [[99/91]] (+0.4¢); [[49/45]] (−1.1¢); [[27/25]] (+13.1¢) | |||
| K | |||
| ^F, vGb, Dx | |||
|- | |||
| 4 | |||
| 195.1 | |||
| 133.3 | |||
| SA1/Sm2 | |||
| [[55/49]] (−4.9¢); [[91/81]] (−6.5¢); [[39/35]] (+7.7¢) | |||
| ^K | |||
| Gb, vE# | |||
|- | |||
| 5 | |||
| 243.8 | |||
| 166.7 | |||
| sM2/sd3 | |||
| [[15/13]] (−3.9¢); [[63/55]] (+8.7¢) | |||
| vK#, vLb | |||
| ^Gb, E# | |||
|- | |||
| 6 | |||
| 292.6 | |||
| 200 | |||
| M2/d3 | |||
| [[77/65]] (−0.7¢); [[13/11]] (+3.4¢); [[25/21]] (−9.2¢) | |||
| K#, Lb | |||
| vF#, ^E# | |||
|- | |||
| 7 | |||
| 341.4 | |||
| 233.3 | |||
| SM2/Sd3 | |||
| [[11/9]] (−6.0¢); [[91/75]] (+6.6¢) | |||
| ^K#, ^Lb | |||
| F# | |||
|- | |||
| 8 | |||
| 390.1 | |||
| 266.7 | |||
| sA2/sP3/sd4 | |||
| [[49/39]] (−5.0¢); [[81/65]] (+9.2¢) | |||
| vL | |||
| vG, ^F# | |||
|- | |||
| 9 | |||
| 438.9 | |||
| 300 | |||
| A2/P3/d4 | |||
| [[9/7]] (+3.8¢); [[35/27]] (−10.3¢) | |||
| L | |||
| G | |||
|- | |||
| 10 | |||
| 487.7 | |||
| 333.3 | |||
| SA2/SP3/Sd4 | |||
| [[65/49]] (−1.5¢); [[33/25]] (+7.0¢) | |||
| ^L | |||
| ^G, vAb | |||
|- | |||
| 11 | |||
| 536.4 | |||
| 366.7 | |||
| sA3/sm4/sd5 | |||
| [[15/11]] (−0.5¢) | |||
| vM | |||
| Ab | |||
|- | |||
| 12 | |||
| 585.2 | |||
| 400 | |||
| A3/m4/d5 | |||
| [[7/5]] (+2.7¢) | |||
| M | |||
| ^Ab, Fx | |||
|- | |||
| 13 | |||
| 634.0 | |||
| 433.3 | |||
| SA3/Sm4/Sd5 | |||
| [[13/9]] (−2.6¢) | |||
| ^M | |||
| vG# | |||
|- | |||
| 14 | |||
| 682.7 | |||
| 466.7 | |||
| sM4/sm5 | |||
| [[135/91]] (+0.07¢); [[49/33]] (−1.6¢); [[81/55]] (+12.6¢) | |||
| vM#, vNb | |||
| G# | |||
|- | |||
| 15 | |||
| 731.5 | |||
| 500 | |||
| M4/m5 | |||
| [[75/49]] (−5.4¢); [[117/77]] (+7.2¢) | |||
| M#, Nb | |||
| vA, ^G# | |||
|- | |||
| 16 | |||
| 780.3 | |||
| 533.3 | |||
| SM4/Sm5 | |||
| [[11/7]] (−2.2¢); [[39/25]] (+10.4¢) | |||
| ^M#, ^Nb | |||
| A | |||
|- | |||
| 17 | |||
| 829.0 | |||
| 566.7 | |||
| sA4/sM5 | |||
| [[21/13]] (−1.2¢) | |||
| vN | |||
| ^A, vBb | |||
|- | |||
| 18 | |||
| 877.8 | |||
| 600 | |||
| A4/M5 | |||
| [[91/55]] (+6.1¢); [[5/3]] (−6.5¢); [[81/49]] (+7.7¢) | |||
| N | |||
| Bb | |||
|- | |||
| 19 | |||
| 926.6 | |||
| 633.3 | |||
| SA4/SM5 | |||
| [[77/45]] (−3.3¢) | |||
| ^N | |||
| ^Bb, vCb, Gx | |||
|- | |||
| 20 | |||
| 975.3 | |||
| 666.7 | |||
| sA5/sm6/sd7 | |||
| [[135/77]] (+3.3¢) | |||
| vO | |||
| vA#, Cb | |||
|- | |||
| 21 | |||
| 1024.1 | |||
| 700 | |||
| A5/m6/d7 | |||
| [[165/91]] (−6.1¢); [[9/5]] (+6.5¢); [[49/27]] (−7.7¢) | |||
| O | |||
| A#, ^Cb | |||
|- | |||
| 22 | |||
| 1072.9 | |||
| 733.3 | |||
| SA5/Sm6/Sd7 | |||
| [[13/7]] (+1.2¢) | |||
| ^O | |||
| vB, ^A# | |||
|- | |||
| 23 | |||
| 1121.6 | |||
| 766.7 | |||
| sM6/sm7 | |||
| [[21/11]] (+2.2¢); [[25/13]] (−10.4¢) | |||
| vO#, vPb | |||
| B | |||
|- | |||
| 24 | |||
| 1170.4 | |||
| 800 | |||
| M6/m7 | |||
| [[49/25]] (+5.4¢); [[77/39]] (−7.2¢) | |||
| O#, Pb | |||
| ^B, vC | |||
|- | |||
| 25 | |||
| 1219.2 | |||
| 833.3 | |||
| SM6/Sm7 | |||
| [[91/45]] (+0.07¢); [[99/49]] (+1.6¢); [[55/27]] (−12.6¢) | |||
| ^O#, ^Pb | |||
| C | |||
|- | |||
| 26 | |||
| 1267.9 | |||
| 866.7 | |||
| sA6/sM7/sd8 | |||
| [[27/13]] (+2.6¢) | |||
| vP | |||
| ^C, vDb | |||
|- | |||
| 27 | |||
| 1316.7 | |||
| 900 | |||
| A6/M7/d8 | |||
| [[15/7]] (−2.7¢) | |||
| P | |||
| Db, vB# | |||
|- | |||
| 28 | |||
| 1365.5 | |||
| 933.3 | |||
| SA6/SM7/Sd8 | |||
| [[11/5]] (+0.5¢) | |||
| ^P | |||
| ^Db, B# | |||
|- | |||
| 29 | |||
| 1414.2 | |||
| 966.7 | |||
| sP8/sd9 | |||
| [[147/65]] (+1.5¢); [[25/11]] (−7.0¢) | |||
| vQ | |||
| vC#, ^B# | |||
|- | |||
| 30 | |||
| 1463.0 | |||
| 1000 | |||
| P8/d9 | |||
| [[7/3]] (−3.8¢); [[81/35]] (+10.3¢) | |||
| Q | |||
| C# | |||
|- | |||
| 31 | |||
| 1511.8 | |||
| 1033.3 | |||
| SP8/Sd9 | |||
| [[117/49]] (+5.0¢); [[65/27]] (−9.2¢) | |||
| ^Q | |||
| vD, ^C# | |||
|- | |||
| 32 | |||
| 1560.5 | |||
| 1066.7 | |||
| sA8/sm9 | |||
| [[27/11]] (+6.0¢); [[225/91]] (+6.6¢) | |||
| vQ#, vRb | |||
| D | |||
|- | |||
| 33 | |||
| 1609.3 | |||
| 1100 | |||
| A8/m9 | |||
| [[195/77]] (−0.7¢); [[33/13]] (−3.4¢); [[63/25]] (+9.2¢) | |||
| Q#, Rb | |||
| ^D, vEb | |||
|- | |||
| 34 | |||
| 1658.1 | |||
| 1133.3 | |||
| SA8/Sm9 | |||
| [[13/5]] (+3.9¢); [[55/21]] (−8.7¢) | |||
| ^Q#, ^Rb | |||
| Eb | |||
|- | |||
| 35 | |||
| 1706.9 | |||
| 1166.7 | |||
| sM9/sd10 | |||
| [[147/55]] (+4.9¢); [[243/91]] (+6.5¢); [[35/13]] (−7.7¢) | |||
| vR | |||
| ^Eb, vFb, Cx | |||
|- | |||
| 36 | |||
| 1755.7 | |||
| 1200 | |||
| M9/d10 | |||
| [[91/33]] (+0.4¢); [[135/49]] (+1.1¢); [[25/9]] (−13.1¢) | |||
| R | |||
| vD#, Fb | |||
|- | |||
| 37 | |||
| 1804.5 | |||
| 1233.3 | |||
| SM9/Sd10 | |||
| [[99/35]] (+4.3¢); [[77/27]] (−9.9¢) | |||
| ^R | |||
| D#, ^Fb | |||
|- | |||
| 38 | |||
| 1853.2 | |||
| 1266.7 | |||
| sA9/sP10 | |||
| [[225/77]] (−3.2¢); [[189/65]] (+5.3¢) | |||
| vJ | |||
| vE, ^D# | |||
|- | |||
| 39 | |||
| 1902.0 | |||
| 1300 | |||
| A9/P10 | |||
| [[3/1]] | |||
| J | |||
| E | |||
|} | |||
== Approximation to JI == | |||
=== No-2 zeta peak === | |||
{| class="wikitable" | |||
|+ | |||
!Steps | |||
per octave | |||
!Steps | |||
per tritave | |||
!Step size | |||
(cents) | |||
!Height | |||
!Tritave size | |||
(cents) | |||
!Tritave stretch | |||
(cents) | |||
|- | |||
|24.573831630 | |||
|38.948601633 | |||
|48.832433543 | |||
|4.665720 | |||
|1904.464908194 | |||
|2.509907328 | |||
|} | |||
Every 7 steps of the [[172edo|172f]] val is an excellent approximation of the ninth no-2 zeta peak in the 15-limit. | |||
== Music == | |||
; [[Francium]] | |||
* [https://www.youtube.com/watch?v=jstg4_B0jfY ''Strange Juice''] (2025) | |||
;[https://www.youtube.com/@PhanomiumMusic Phanomium] | |||
* ''[https://www.youtube.com/watch?v=GX79ZX1Z8C8 Polygonal]'' (2025) |