33edo: Difference between revisions
Wikispaces>genewardsmith **Imported revision 243299241 - Original comment: ** |
→21st century: Add Bryan Deister's ''33edo riff'' (2025) |
||
(151 intermediate revisions by 23 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
While relatively uncommon, 33edo is actually quite an interesting system. As a multiple of [[11edo]], it approximates the 7th and 11th harmonics via | == Theory == | ||
=== Structural properties === | |||
While relatively uncommon, 33edo is actually quite an interesting system. As a multiple of [[11edo]], it approximates the 7th and 11th harmonics via [[orgone]] temperament (see [[26edo]]). 33edo also tunes the 13th harmonic slightly flat, allowing it to approximate the 21st and 17th harmonics as well, having a [[3L 7s]] with {{nowrap|L {{=}} 4|s {{=}} 3}}. The 33c ({{val| 33 52 76 93 }}) and 33cd ({{val| 33 52 76 92 }}) mappings temper out [[81/80]] and can be used to represent [[1/2-comma meantone]], a [[Meantone family#Flattertone|"flattertone"]] tuning where the whole tone is [[10/9]] in size. Indeed, the perfect fifth is tuned about 11{{c}} flat, and two stacked fifths fall only 0.6{{c}} flat of 10/9. Leaving the scale be would result in the standard diatonic scale ([[5L 2s]]) having minor seconds of four steps and whole tones of five steps. This also results in common practice minor and major chords becoming more supraminor and submajor in character, making everything sound almost neutral in quality. | |||
Instead of the flat 19 | Instead of the flat 19-step fifth you may use the 20-step sharp fifth, over 25{{c}} sharp. Two of these lead to a 9/8 of 7\33, which is about 22/19 in size and may be counted as a small third. Between the flat 5\33 version of 9/8 and the sharp 7\33 version there is, of course, a {{nowrap|6\33 {{=}} 2\[[11edo|11]]}} interval of 218{{c}}. Together, these add up to {{nowrap|6\33 + 5\33 {{=}} 11\33 {{=}} 1\3}}, or 400{{c}}, the same major third as 12edo. We also have both a 327{{c}} minor third ({{nowrap|9\33 {{=}} 6\22 {{=}} 3\11}}), the same as that of [[22edo]], and a flatter 8\33 third of 291{{c}}, which if you like could also be called a flat 19th harmonic, but much more accurately a 13/11 sharp by 1.7{{c}} (if you use the patent val it is an extremely inaccurate 6/5). Another talent it has is that 7/5 is tuned quite accurately by 16\33, and we may put two 8\33 versions of 13/11 together to produce the [[cuthbert triad]]. The 8\33 generator, with MOS of size 5, 9, and 13, gives plenty of scope for these, as well as the 11th, 13th, and 19th harmonics (taking the generator as a 19/16) which are relatively well in tune. | ||
33edo contains an accurate approximation of the [[Bohlen–Pierce]] scale with 4\33 near [[13edt|1\13edt]]. | |||
Other notable 33edo scales are [[diasem]] with {{nowrap|L:m:s {{=}} 5:3:1}} and [[5L 4s]] with {{nowrap|L:s {{=}} 5:2}}. This step ratio for 5L 4s is great for its semitone size of 72.7{{c}}. | |||
3: | |||
=== Odd harmonics === | |||
5: | {{Harmonics in equal|33}} | ||
33edo is not especially good at representing all rational intervals in the [[7-limit]], but it does very well on the 7-limit [[k*N subgroups|3*33 subgroup]] 2.27.15.21.11.13. On this subgroup it tunes things to the same tuning as [[99edo]], and as a subgroup patent val it tempers out the same commas. The 99 equal temperaments hemififths, amity, parakleismic, hemiwuerschmidt, ennealimmal and hendecatonic can be reduced to this subgroup and give various possibilities for MOS scales, etc. In particular, the [[terrain]] 2.7/5.9/5 subgroup temperament can be tuned via the 5\33 generator. The full system of harmony provides the optimal patent val for [[slurpee]] temperament in the 5-, 7-, 11-, and 13-limits. | |||
While it might not be the most harmonically accurate temperament, it is structurally quite interesting, and it approximates the full 19-limit consort in its own way. You could even say it tunes the 23rd and 29th harmonics ten cents flat if you were so inclined; as well as getting within two cents of the 37th. | |||
11 | === Miscellany === | ||
33 is also the number of years in the Iranian calendar's leap cycle, where leap year is inserted once every 4 or 5 years. This corresponds to the [[1L 7s]] with the step ratio of 5:4. | |||
13 | |||
== Intervals == | |||
{| class="wikitable center-all" | |||
|- | |||
! rowspan="2" |Step # | |||
! ET | |||
19 | ! colspan="2" | Just | ||
! rowspan="2" | Difference<br>(ET minus Just) | |||
! rowspan="2" colspan="3" | Extended Pythagorean notation | |||
|- | |||
! Cents | |||
! Interval | |||
! Cents | |||
|- | |||
| 0 | |||
| 0 | |||
| [[1/1]] | |||
| 0 | |||
| 0 | |||
| Perfect Unison | |||
| P1 | |||
| D | |||
|- | |||
| 1 | |||
| 36.364 | |||
| [[48/47]] | |||
| 36.448 | |||
| −0.085 | |||
| Augmented Unison | |||
| A1 | |||
| D# | |||
|- | |||
| 2 | |||
5 | | 72.727 | ||
| [[24/23]] | |||
| 73.681 | |||
| −0.953 | |||
| Double-aug 1sn | |||
| AA1 | |||
| Dx | |||
|- | |||
| 3 | |||
| 109.091 | |||
| [[16/15]] | |||
| 111.731 | |||
| −2.640 | |||
| Diminished 2nd | |||
| d2 | |||
| Ebb | |||
|- | |||
| 4 | |||
| 145.455 | |||
| [[12/11]] | |||
| 150.637 | |||
| −5.183 | |||
| Minor 2nd | |||
| m2 | |||
| Eb | |||
|- | |||
| 5 | |||
| 181.818 | |||
| [[10/9]] | |||
| 182.404 | |||
| −0.586 | |||
| Major 2nd | |||
| M2 | |||
| E | |||
|- | |||
| 6 | |||
| 218.182 | |||
| [[17/15]] | |||
| 216.687 | |||
| +1.495 | |||
| Augmented 2nd | |||
| A2 | |||
| E# | |||
|- | |||
| 7 | |||
| 254.545 | |||
| [[15/13]] | |||
| 247.741 | |||
| +6.804 | |||
| Double-aug 2nd/Double-dim 3rd | |||
| AA2/dd3 | |||
| Ex/Fbb | |||
|- | |||
| 8 | |||
| 290.909 | |||
| [[13/11]] | |||
| 289.210 | |||
| +1.699 | |||
| Diminished 3rd | |||
| d3 | |||
| Fb | |||
|- | |||
| 9 | |||
| 327.273 | |||
| [[6/5]] | |||
| 315.641 | |||
| +11.631 | |||
| Minor 3rd | |||
| m3 | |||
| F | |||
|- | |||
| 10 | |||
| 363.636 | |||
| [[16/13]] | |||
| 359.472 | |||
| +4.164 | |||
| Major 3rd | |||
| M3 | |||
| F# | |||
|- | |||
| 11 | |||
| 400.000 | |||
| [[5/4]] | |||
| 386.314 | |||
| +13.686 | |||
| Augmented 3rd | |||
| A3 | |||
| Fx | |||
|- | |||
| 12 | |||
| 436.364 | |||
| [[9/7]] | |||
| 435.084 | |||
| +1.280 | |||
| Double-dim 4th | |||
| dd4 | |||
| Gbb | |||
|- | |||
| 13 | |||
| 472.727 | |||
| [[21/16]] | |||
| 470.781 | |||
| +1.946 | |||
| Diminished 4th | |||
| d4 | |||
| Gb | |||
|- | |||
| 14 | |||
| 509.091 | |||
| [[4/3]] | |||
| 498.045 | |||
| +11.046 | |||
| Perfect 4th | |||
| P4 | |||
| G | |||
|- | |||
| 15 | |||
| 545.455 | |||
| [[11/8]] | |||
| 551.318 | |||
| −5.863 | |||
| Augmented 4th | |||
| A4 | |||
| G# | |||
|- | |||
| 16 | |||
| 581.818 | |||
| [[7/5]] | |||
| 582.513 | |||
| −0.694 | |||
| Double-aug 4th | |||
| AA4 | |||
| Gx | |||
|- | |||
| 17 | |||
| 618.182 | |||
| [[10/7]] | |||
| 617.488 | |||
| +0.694 | |||
| Double-dim 5th | |||
| dd5 | |||
| Abb | |||
|- | |||
| 18 | |||
| 654.545 | |||
| [[16/11]] | |||
| 648.682 | |||
| +5.863 | |||
| Diminished 5th | |||
| d5 | |||
| Ab | |||
|- | |||
| 19 | |||
| 690.909 | |||
| [[3/2]] | |||
| 701.955 | |||
| −11.046 | |||
| Perfect 5th | |||
| P5 | |||
| A | |||
|- | |||
| 20 | |||
| 727.273 | |||
| [[32/21]] | |||
| 729.219 | |||
| -1.946 | |||
| Augmented 5th | |||
| A5 | |||
| A# | |||
|- | |||
| 21 | |||
| 763.636 | |||
| [[14/9]] | |||
| 764.916 | |||
| −1.280 | |||
| Double-aug 5th | |||
| AA5 | |||
| Ax | |||
|- | |||
| 22 | |||
| 800.000 | |||
| [[8/5]] | |||
| 813.686 | |||
| −13.686 | |||
| Double-dim 6th | |||
| d6 | |||
| Bbb | |||
|- | |||
| 23 | |||
| 836.364 | |||
| [[13/8]] | |||
| 840.528 | |||
| −4.164 | |||
| Minor 6th | |||
| m6 | |||
| Bb | |||
|- | |||
| 24 | |||
| 872.727 | |||
| [[5/3]] | |||
| 884.359 | |||
| −11.631 | |||
| Major 6th | |||
| M6 | |||
| B | |||
|- | |||
| 25 | |||
| 909.091 | |||
| [[22/13]] | |||
| 910.790 | |||
| −1.699 | |||
| Augmented 6th | |||
| A6 | |||
| B# | |||
|- | |||
| 26 | |||
| 945.455 | |||
| [[12/7]] | |||
| 933.129 | |||
| +12.325 | |||
| Double-aug 6th/Double-dim 7th | |||
| AA6/dd7 | |||
| Bx/Cbb | |||
|- | |||
| 27 | |||
| 981.818 | |||
| [[30/17]] | |||
| 983.313 | |||
| −1.495 | |||
| Diminished 7th | |||
| d7 | |||
| Cb | |||
|- | |||
| 28 | |||
| 1018.182 | |||
| [[9/5]] | |||
| 1017.596 | |||
| +0.586 | |||
| Minor 7th | |||
| m7 | |||
| C | |||
|- | |||
| 29 | |||
| 1054.545 | |||
| [[11/6]] | |||
| 1049.363 | |||
| +5.183 | |||
| Major 7th | |||
| M7 | |||
| C# | |||
|- | |||
| 30 | |||
| 1090.909 | |||
| [[15/8]] | |||
| 1088.268 | |||
| +2.640 | |||
| Augmented 7th | |||
| A7 | |||
| Cx | |||
|- | |||
| 31 | |||
| 1127.273 | |||
| [[23/12]] | |||
| 1126.319 | |||
| −0.953 | |||
| Double-dim 8ve | |||
| dd8 | |||
| Dbb | |||
|- | |||
| 32 | |||
| 1163.636 | |||
| [[47/24]] | |||
| 1163.551 | |||
| +0.085 | |||
| Diminished 8ve | |||
| d8 | |||
| Db | |||
|- | |||
| 33 | |||
| 1200 | |||
| [[2/1]] | |||
| 1200 | |||
| 0 | |||
| Perfect Octave | |||
| P8 | |||
| D | |||
|} | |||
== Notation == | |||
=== Standard notation === | |||
Because the [[chromatic semitone]] in 33edo is 1 step, 33edo can be notated using only naturals, sharps, and flats. However, many key signatures will require double- and triple-sharps and flats, which means that notation in distant keys can be very unwieldy. | |||
{{sharpness-sharp1}} | |||
=== Sagittal notation === | |||
This notation uses the same sagittal sequence as EDOs [[23edo#Sagittal notation|23]] and [[28edo#Sagittal notation|28]]. | |||
<imagemap> | |||
File:33-EDO_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 399 0 559 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 399 106 [[Fractional_3-limit_notation#Bad-fifths_limma-fraction_notation | limma-fraction notation]] | |||
default [[File:33-EDO_Sagittal.svg]] | |||
</imagemap> | |||
== Approximation to JI == | |||
{{Q-odd-limit intervals}} | |||
{{Q-odd-limit intervals|32.87|apx=val|header=none|tag=none|title=15-odd-limit intervals by 33cd val mapping}} | |||
== Nearby equal temperaments == | |||
[[File:33edo.png|alt=33edo.png|966x199px|33edo.png]] | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| -52 33 }} | |||
| {{mapping| 33 52 }} | |||
| +3.48 | |||
| 3.49 | |||
| 9.59 | |||
|- | |||
| 2.3.5 | |||
| 81/80, 1171875/1048576 | |||
| {{mapping| 33 52 76 }} (33c) | |||
| +5.59 | |||
| 4.13 | |||
| 11.29 | |||
|- | |||
| 2.3.5.7 | |||
| 49/48, 81/80, 1875/1792 | |||
| {{mapping| 33 52 76 92 }} (33cd) | |||
| +6.29 | |||
| 3.77 | |||
| 10.31 | |||
|- | |||
| 2.3.5.7.11 | |||
| 45/44, 49/48, 81/80, 1375/1344 | |||
| {{mapping| 33 52 76 92 114 }} (33cd) | |||
| +5.36 | |||
| 3.84 | |||
| 10.50 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 45/44, 49/48, 65/64, 81/80, 275/273 | |||
| {{mapping| 33 52 76 92 114 122 }} (33cd) | |||
| +4.65 | |||
| 3.84 | |||
| 10.52 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br>per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br>ratio* | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 2\33 | |||
| 72.73 | |||
| 21/20 | |||
| [[Slurpee]] (33) | |||
|- | |||
| 1 | |||
| 4\33 | |||
| 145.45 | |||
| 12/11 | |||
| [[Bohpier]] (33cd) | |||
|- | |||
| 1 | |||
| 7\33 | |||
| 254.55 | |||
| 8/7 | |||
| [[Godzilla]] (33cd) | |||
|- | |||
| 1 | |||
| 8\33 | |||
| 290.91 | |||
| 25/21 | |||
| [[Quasitemp]] (33b) | |||
|- | |||
| 1 | |||
| 10\33 | |||
| 363.64 | |||
| 49/40 | |||
| [[Submajor]] (33ee) / [[interpental]] (33e) | |||
|- | |||
| 1 | |||
| 14\33 | |||
| 509.09 | |||
| 4/3 | |||
| [[Flattertone]] (33cd)<br>[[Deeptone]] a.k.a. tragicomical (33) | |||
|- | |||
| 1 | |||
| 16\33 | |||
| 581.82 | |||
| 7/5 | |||
| [[Tritonic]] (33) | |||
|- | |||
| 3 | |||
| 7\33<br>(4\33) | |||
| 254.55<br>(145.45) | |||
| 8/7<br>(12/11) | |||
| [[Triforce]] (33d) | |||
|- | |||
| 3 | |||
| 13\33<br>(2\33) | |||
| 472.73<br>(72.73) | |||
| 4/3<br>(25/24) | |||
| [[Inflated]] (33bcddd) | |||
|- | |||
| 3 | |||
| 14\33<br>(3\33) | |||
| 509.09<br>(98.09) | |||
| 4/3<br>(16/15) | |||
| [[August]] (33cd) | |||
|} | |||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Scales == | |||
* {{main|List of MOS scales in {{ROOTPAGENAME}}}} | |||
Brightest mode is listed except where noted. | |||
* Deeptone[7], 5 5 5 4 5 5 4 (diatonic) | |||
** Fun 5-tone subset of Deeptone[7] 9 5 5 4 10 | |||
* Deeptone[12], 4 4 1 4 1 4 4 1 4 1 4 1 (chromatic) | |||
* Deeptone[19], 3 1 3 1 1 3 1 1 3 1 3 1 1 3 1 1 3 1 1 (enharmonic) | |||
* Semiquartal, 5 5 2 5 2 5 2 5 2 | |||
* Semiquartal[14], 3 2 3 2 2 3 2 2 3 2 2 | |||
* Iranian Calendar, 5 4 4 4 4 4 4 4 | |||
* [[Diasem]], 5 3 5 1 5 3 5 1 5 (*right-handed) | |||
* Diasem, 5 1 5 3 5 1 5 3 5 (*left-handed) | |||
* [[Diaslen]] (4sR), 1 5 1 5 2 5 1 5 1 5 2 | |||
* Diaslen (4sL), 2 5 1 5 1 5 2 5 1 5 1 | |||
* Diaslen (4sC), 1 5 2 5 1 5 1 5 2 5 1 | |||
== Delta-rational harmony == | |||
The tables below show chords that approximate 3-integer-limit [[delta-rational]] chords with least-squares error less than 0.001. | |||
=== Fully delta-rational triads === | |||
{| class="mw-collapsible mw-collapsed class="wikitable sortable" | |||
|- | |||
! Steps | |||
! Delta signature | |||
! Least-squares error | |||
|- | |||
| 0,1,2 | |||
| +1+1 | |||
| 0.00021 | |||
|- | |||
| 0,1,3 | |||
| +1+2 | |||
| 0.00048 | |||
|- | |||
| 0,1,4 | |||
| +1+3 | |||
| 0.00078 | |||
|- | |||
| 0,2,3 | |||
| +2+1 | |||
| 0.00039 | |||
|- | |||
| 0,2,4 | |||
| +1+1 | |||
| 0.00087 | |||
|- | |||
| 0,3,4 | |||
| +3+1 | |||
| 0.00056 | |||
|- | |||
| 0,3,11 | |||
| +1+3 | |||
| 0.00007 | |||
|- | |||
| 0,5,8 | |||
| +3+2 | |||
| 0.00084 | |||
|- | |||
| 0,8,18 | |||
| +2+3 | |||
| 0.00082 | |||
|- | |||
| 0,9,20 | |||
| +2+3 | |||
| 0.00076 | |||
|- | |||
| 0,12,17 | |||
| +2+1 | |||
| 0.00048 | |||
|- | |||
| 0,13,20 | |||
| +3+2 | |||
| 0.00063 | |||
|- | |||
| 0,15,21 | |||
| +2+1 | |||
| 0.00063 | |||
|- | |||
| 0,16,28 | |||
| +1+1 | |||
| 0.00082 | |||
|- | |||
| 0,18,25 | |||
| +2+1 | |||
| 0.00081 | |||
|- | |||
| 0,18,31 | |||
| +1+1 | |||
| 0.00058 | |||
|- | |||
| 0,19,24 | |||
| +3+1 | |||
| 0.00095 | |||
|} | |||
=== Partially delta-rational tetrads === | |||
{| class="mw-collapsible mw-collapsed class="wikitable sortable" | |||
|- | |||
! Steps | |||
! Delta signature | |||
! Least-squares error | |||
|- | |||
| 0,1,2,3 | |||
| +1+?+1 | |||
| 0.00053 | |||
|- | |||
| 0,1,2,4 | |||
| +1+?+2 | |||
| 0.00094 | |||
|- | |||
| 0,1,3,4 | |||
| +1+?+1 | |||
| 0.00080 | |||
|- | |||
| 0,1,17,18 | |||
| +2+?+3 | |||
| 0.00073 | |||
|- | |||
| 0,1,17,19 | |||
| +1+?+3 | |||
| 0.00071 | |||
|- | |||
| 0,1,18,19 | |||
| +2+?+3 | |||
| 0.00042 | |||
|- | |||
| 0,1,18,20 | |||
| +1+?+3 | |||
| 0.00032 | |||
|- | |||
| 0,1,19,20 | |||
| +2+?+3 | |||
| 0.00010 | |||
|- | |||
| 0,1,19,21 | |||
| +1+?+3 | |||
| 0.00008 | |||
|- | |||
| 0,1,20,21 | |||
| +2+?+3 | |||
| 0.00023 | |||
|- | |||
| 0,1,20,22 | |||
| +1+?+3 | |||
| 0.00049 | |||
|- | |||
| 0,1,21,22 | |||
| +2+?+3 | |||
| 0.00056 | |||
|- | |||
| 0,1,21,23 | |||
| +1+?+3 | |||
| 0.00091 | |||
|- | |||
| 0,1,22,23 | |||
| +2+?+3 | |||
| 0.00090 | |||
|- | |||
| 0,1,31,32 | |||
| +1+?+2 | |||
| 0.00071 | |||
|- | |||
| 0,2,3,4 | |||
| +2+?+1 | |||
| 0.00077 | |||
|- | |||
| 0,2,6,11 | |||
| +1+?+3 | |||
| 0.00094 | |||
|- | |||
| 0,2,7,12 | |||
| +1+?+3 | |||
| 0.00013 | |||
|- | |||
| 0,2,8,13 | |||
| +1+?+3 | |||
| 0.00069 | |||
|- | |||
| 0,2,12,13 | |||
| +3+?+2 | |||
| 0.00083 | |||
|- | |||
| 0,2,12,15 | |||
| +1+?+2 | |||
| 0.00087 | |||
|- | |||
| 0,2,13,14 | |||
| +3+?+2 | |||
| 0.00045 | |||
|- | |||
| 0,2,13,16 | |||
| +1+?+2 | |||
| 0.00014 | |||
|- | |||
| 0,2,14,15 | |||
| +3+?+2 | |||
| 0.00008 | |||
|- | |||
| 0,2,14,17 | |||
| +1+?+2 | |||
| 0.00060 | |||
|- | |||
| 0,2,15,16 | |||
| +3+?+2 | |||
| 0.00031 | |||
|- | |||
| 0,2,16,17 | |||
| +3+?+2 | |||
| 0.00071 | |||
|- | |||
| 0,2,18,20 | |||
| +2+?+3 | |||
| 0.00084 | |||
|- | |||
| 0,2,18,22 | |||
| +1+?+3 | |||
| 0.00024 | |||
|- | |||
| 0,2,19,21 | |||
| +2+?+3 | |||
| 0.00020 | |||
|- | |||
| 0,2,19,23 | |||
| +1+?+3 | |||
| 0.00058 | |||
|- | |||
| 0,2,20,22 | |||
| +2+?+3 | |||
| 0.00046 | |||
|- | |||
| 0,3,4,5 | |||
| +3+?+1 | |||
| 0.00097 | |||
|- | |||
| 0,3,5,9 | |||
| +2+?+3 | |||
| 0.00010 | |||
|- | |||
| 0,3,6,10 | |||
| +2+?+3 | |||
| 0.00090 | |||
|- | |||
| 0,3,7,12 | |||
| +1+?+2 | |||
| 0.00074 | |||
|- | |||
| 0,3,8,13 | |||
| +1+?+2 | |||
| 0.00037 | |||
|- | |||
| 0,3,10,17 | |||
| +1+?+3 | |||
| 0.00009 | |||
|- | |||
| 0,3,17,23 | |||
| +1+?+3 | |||
| 0.00096 | |||
|- | |||
| 0,3,18,22 | |||
| +1+?+2 | |||
| 0.00088 | |||
|- | |||
| 0,3,18,24 | |||
| +1+?+3 | |||
| 0.00027 | |||
|- | |||
| 0,3,19,20 | |||
| +2+?+1 | |||
| 0.00059 | |||
|- | |||
| 0,3,19,21 | |||
| +1+?+1 | |||
| 0.00063 | |||
|- | |||
| 0,3,19,22 | |||
| +2+?+3 | |||
| 0.00030 | |||
|- | |||
| 0,3,19,23 | |||
| +1+?+2 | |||
| 0.00023 | |||
|- | |||
| 0,3,20,21 | |||
| +2+?+1 | |||
| 0.00014 | |||
|- | |||
| 0,3,20,22 | |||
| +1+?+1 | |||
| 0.00015 | |||
|- | |||
| 0,3,20,23 | |||
| +2+?+3 | |||
| 0.00070 | |||
|- | |||
| 0,3,21,22 | |||
| +2+?+1 | |||
| 0.00032 | |||
|- | |||
| 0,3,21,23 | |||
| +1+?+1 | |||
| 0.00095 | |||
|- | |||
| 0,3,22,23 | |||
| +2+?+1 | |||
| 0.00078 | |||
|- | |||
| 0,3,27,32 | |||
| +1+?+3 | |||
| 0.00004 | |||
|- | |||
| 0,4,5,12 | |||
| +1+?+2 | |||
| 0.00026 | |||
|- | |||
| 0,4,6,16 | |||
| +1+?+3 | |||
| 0.00066 | |||
|- | |||
| 0,4,8,13 | |||
| +2+?+3 | |||
| 0.00023 | |||
|- | |||
| 0,4,11,20 | |||
| +1+?+3 | |||
| 0.00023 | |||
|- | |||
| 0,4,13,14 | |||
| +3+?+1 | |||
| 0.00091 | |||
|- | |||
| 0,4,13,19 | |||
| +1+?+2 | |||
| 0.00048 | |||
|- | |||
| 0,4,14,15 | |||
| +3+?+1 | |||
| 0.00050 | |||
|- | |||
| 0,4,14,16 | |||
| +3+?+2 | |||
| 0.00055 | |||
|- | |||
| 0,4,14,17 | |||
| +1+?+1 | |||
| 0.00021 | |||
|- | |||
| 0,4,15,16 | |||
| +3+?+1 | |||
| 0.00009 | |||
|- | |||
| 0,4,15,17 | |||
| +3+?+2 | |||
| 0.00023 | |||
|- | |||
| 0,4,15,18 | |||
| +1+?+1 | |||
| 0.00085 | |||
|- | |||
| 0,4,16,17 | |||
| +3+?+1 | |||
| 0.00034 | |||
|- | |||
| 0,4,17,18 | |||
| +3+?+1 | |||
| 0.00077 | |||
|- | |||
| 0,4,17,25 | |||
| +1+?+3 | |||
| 0.00043 | |||
|- | |||
| 0,4,19,23 | |||
| +2+?+3 | |||
| 0.00041 | |||
|- | |||
| 0,4,20,24 | |||
| +2+?+3 | |||
| 0.00094 | |||
|- | |||
| 0,4,22,27 | |||
| +1+?+2 | |||
| 0.00020 | |||
|- | |||
| 0,4,24,31 | |||
| +1+?+3 | |||
| 0.00022 | |||
|- | |||
| 0,5,6,9 | |||
| +3+?+2 | |||
| 0.00003 | |||
|- | |||
| 0,5,7,10 | |||
| +3+?+2 | |||
| 0.00097 | |||
|- | |||
| 0,5,7,19 | |||
| +1+?+3 | |||
| 0.00004 | |||
|- | |||
| 0,5,9,17 | |||
| +1+?+2 | |||
| 0.00017 | |||
|- | |||
| 0,5,10,16 | |||
| +2+?+3 | |||
| 0.00019 | |||
|- | |||
| 0,5,11,13 | |||
| +2+?+1 | |||
| 0.00087 | |||
|- | |||
| 0,5,11,15 | |||
| +1+?+1 | |||
| 0.00018 | |||
|- | |||
| 0,5,12,14 | |||
| +2+?+1 | |||
| 0.00011 | |||
|- | |||
| 0,5,12,23 | |||
| +1+?+3 | |||
| 0.00067 | |||
|- | |||
| 0,5,13,15 | |||
| +2+?+1 | |||
| 0.00067 | |||
|- | |||
| 0,5,16,23 | |||
| +1+?+2 | |||
| 0.00008 | |||
|- | |||
| 0,5,17,27 | |||
| +1+?+3 | |||
| 0.00055 | |||
|- | |||
| 0,5,19,24 | |||
| +2+?+3 | |||
| 0.00051 | |||
|- | |||
| 0,5,22,31 | |||
| +1+?+3 | |||
| 0.00057 | |||
|- | |||
| 0,5,24,30 | |||
| +1+?+2 | |||
| 0.00036 | |||
|- | |||
| 0,5,25,26 | |||
| +3+?+1 | |||
| 0.00071 | |||
|- | |||
| 0,5,25,27 | |||
| +3+?+2 | |||
| 0.00082 | |||
|- | |||
| 0,5,25,28 | |||
| +1+?+1 | |||
| 0.00045 | |||
|- | |||
| 0,5,26,27 | |||
| +3+?+1 | |||
| 0.00018 | |||
|- | |||
| 0,5,26,28 | |||
| +3+?+2 | |||
| 0.00016 | |||
|- | |||
| 0,5,26,29 | |||
| +1+?+1 | |||
| 0.00090 | |||
|- | |||
| 0,5,27,28 | |||
| +3+?+1 | |||
| 0.00035 | |||
|- | |||
| 0,5,28,29 | |||
| +3+?+1 | |||
| 0.00090 | |||
|- | |||
| 0,6,7,17 | |||
| +1+?+2 | |||
| 0.00087 | |||
|- | |||
| 0,6,8,22 | |||
| +1+?+3 | |||
| 0.00045 | |||
|- | |||
| 0,6,9,14 | |||
| +1+?+1 | |||
| 0.00031 | |||
|- | |||
| 0,6,11,18 | |||
| +2+?+3 | |||
| 0.00093 | |||
|- | |||
| 0,6,12,21 | |||
| +1+?+2 | |||
| 0.00036 | |||
|- | |||
| 0,6,12,25 | |||
| +1+?+3 | |||
| 0.00032 | |||
|- | |||
| 0,6,15,18 | |||
| +3+?+2 | |||
| 0.00026 | |||
|- | |||
| 0,6,16,19 | |||
| +3+?+2 | |||
| 0.00095 | |||
|- | |||
| 0,6,16,28 | |||
| +1+?+3 | |||
| 0.00053 | |||
|- | |||
| 0,6,18,26 | |||
| +1+?+2 | |||
| 0.00064 | |||
|- | |||
| 0,6,19,25 | |||
| +2+?+3 | |||
| 0.00062 | |||
|- | |||
| 0,6,20,24 | |||
| +1+?+1 | |||
| 0.00052 | |||
|- | |||
| 0,6,21,23 | |||
| +2+?+1 | |||
| 0.00031 | |||
|- | |||
| 0,6,21,32 | |||
| +1+?+3 | |||
| 0.00033 | |||
|- | |||
| 0,6,22,24 | |||
| +2+?+1 | |||
| 0.00063 | |||
|- | |||
| 0,6,25,32 | |||
| +1+?+2 | |||
| 0.00034 | |||
|- | |||
| 0,7,8,14 | |||
| +1+?+1 | |||
| 0.00029 | |||
|- | |||
| 0,7,8,24 | |||
| +1+?+3 | |||
| 0.00080 | |||
|- | |||
| 0,7,9,11 | |||
| +3+?+1 | |||
| 0.00066 | |||
|- | |||
| 0,7,9,12 | |||
| +2+?+1 | |||
| 0.00041 | |||
|- | |||
| 0,7,9,13 | |||
| +3+?+2 | |||
| 0.00019 | |||
|- | |||
| 0,7,10,12 | |||
| +3+?+1 | |||
| 0.00009 | |||
|- | |||
| 0,7,10,13 | |||
| +2+?+1 | |||
| 0.00070 | |||
|- | |||
| 0,7,11,13 | |||
| +3+?+1 | |||
| 0.00087 | |||
|- | |||
| 0,7,12,27 | |||
| +1+?+3 | |||
| 0.00041 | |||
|- | |||
| 0,7,16,30 | |||
| +1+?+3 | |||
| 0.00098 | |||
|- | |||
| 0,7,17,22 | |||
| +1+?+1 | |||
| 0.00008 | |||
|- | |||
| 0,7,19,26 | |||
| +2+?+3 | |||
| 0.00073 | |||
|- | |||
| 0,7,20,29 | |||
| +1+?+2 | |||
| 0.00002 | |||
|- | |||
| 0,7,23,26 | |||
| +3+?+2 | |||
| 0.00010 | |||
|- | |||
| 0,7,28,32 | |||
| +1+?+1 | |||
| 0.00033 | |||
|- | |||
| 0,7,29,31 | |||
| +2+?+1 | |||
| 0.00020 | |||
|- | |||
| 0,7,30,32 | |||
| +2+?+1 | |||
| 0.00091 | |||
|- | |||
| 0,8,12,29 | |||
| +1+?+3 | |||
| 0.00097 | |||
|- | |||
| 0,8,13,22 | |||
| +2+?+3 | |||
| 0.00051 | |||
|- | |||
| 0,8,15,21 | |||
| +1+?+1 | |||
| 0.00062 | |||
|- | |||
| 0,8,15,31 | |||
| +1+?+3 | |||
| 0.00047 | |||
|- | |||
| 0,8,16,18 | |||
| +3+?+1 | |||
| 0.00066 | |||
|- | |||
| 0,8,16,19 | |||
| +2+?+1 | |||
| 0.00031 | |||
|- | |||
| 0,8,16,20 | |||
| +3+?+2 | |||
| 0.00043 | |||
|- | |||
| 0,8,16,27 | |||
| +1+?+2 | |||
| 0.00090 | |||
|- | |||
| 0,8,17,19 | |||
| +3+?+1 | |||
| 0.00022 | |||
|- | |||
| 0,8,17,20 | |||
| +2+?+1 | |||
| 0.00098 | |||
|- | |||
| 0,8,19,27 | |||
| +2+?+3 | |||
| 0.00085 | |||
|- | |||
| 0,8,24,29 | |||
| +1+?+1 | |||
| 0.00020 | |||
|- | |||
| 0,9,11,16 | |||
| +3+?+2 | |||
| 0.00051 | |||
|- | |||
| 0,9,13,20 | |||
| +1+?+1 | |||
| 0.00002 | |||
|- | |||
| 0,9,14,24 | |||
| +2+?+3 | |||
| 0.00073 | |||
|- | |||
| 0,9,18,30 | |||
| +1+?+2 | |||
| 0.00090 | |||
|- | |||
| 0,9,19,28 | |||
| +2+?+3 | |||
| 0.00096 | |||
|- | |||
| 0,9,21,27 | |||
| +1+?+1 | |||
| 0.00040 | |||
|- | |||
| 0,9,22,24 | |||
| +3+?+1 | |||
| 0.00087 | |||
|- | |||
| 0,9,22,25 | |||
| +2+?+1 | |||
| 0.00053 | |||
|- | |||
| 0,9,22,26 | |||
| +3+?+2 | |||
| 0.00026 | |||
|- | |||
| 0,9,23,25 | |||
| +3+?+1 | |||
| 0.00013 | |||
|- | |||
| 0,9,23,26 | |||
| +2+?+1 | |||
| 0.00093 | |||
|- | |||
| 0,10,11,26 | |||
| +1+?+2 | |||
| 0.00035 | |||
|- | |||
| 0,10,11,32 | |||
| +1+?+3 | |||
| 0.00081 | |||
|- | |||
| 0,10,12,20 | |||
| +1+?+1 | |||
| 0.00098 | |||
|- | |||
| 0,10,14,18 | |||
| +2+?+1 | |||
| 0.00050 | |||
|- | |||
| 0,10,14,25 | |||
| +2+?+3 | |||
| 0.00088 | |||
|- | |||
| 0,10,15,29 | |||
| +1+?+2 | |||
| 0.00041 | |||
|- | |||
| 0,10,16,21 | |||
| +3+?+2 | |||
| 0.00055 | |||
|- | |||
| 0,10,19,32 | |||
| +1+?+2 | |||
| 0.00021 | |||
|- | |||
| 0,10,27,31 | |||
| +3+?+2 | |||
| 0.00082 | |||
|- | |||
| 0,10,28,30 | |||
| +3+?+1 | |||
| 0.00045 | |||
|- | |||
| 0,10,28,31 | |||
| +2+?+1 | |||
| 0.00016 | |||
|- | |||
| 0,10,29,31 | |||
| +3+?+1 | |||
| 0.00068 | |||
|- | |||
| 0,11,12,18 | |||
| +3+?+2 | |||
| 0.00030 | |||
|- | |||
| 0,11,13,16 | |||
| +3+?+1 | |||
| 0.00081 | |||
|- | |||
| 0,11,14,17 | |||
| +3+?+1 | |||
| 0.00044 | |||
|- | |||
| 0,11,16,31 | |||
| +1+?+2 | |||
| 0.00064 | |||
|- | |||
| 0,11,17,25 | |||
| +1+?+1 | |||
| 0.00091 | |||
|- | |||
| 0,11,19,23 | |||
| +2+?+1 | |||
| 0.00045 | |||
|- | |||
| 0,11,21,26 | |||
| +3+?+2 | |||
| 0.00074 | |||
|- | |||
| 0,12,15,24 | |||
| +1+?+1 | |||
| 0.00087 | |||
|- | |||
| 0,12,15,28 | |||
| +2+?+3 | |||
| 0.00013 | |||
|- | |||
| 0,12,17,23 | |||
| +3+?+2 | |||
| 0.00054 | |||
|- | |||
| 0,12,18,21 | |||
| +3+?+1 | |||
| 0.00043 | |||
|- | |||
| 0,12,19,22 | |||
| +3+?+1 | |||
| 0.00095 | |||
|- | |||
| 0,12,23,27 | |||
| +2+?+1 | |||
| 0.00083 | |||
|- | |||
| 0,12,26,31 | |||
| +3+?+2 | |||
| 0.00005 | |||
|- | |||
| 0,13,14,24 | |||
| +1+?+1 | |||
| 0.00019 | |||
|- | |||
| 0,13,17,22 | |||
| +2+?+1 | |||
| 0.00085 | |||
|- | |||
| 0,13,21,27 | |||
| +3+?+2 | |||
| 0.00035 | |||
|- | |||
| 0,13,22,25 | |||
| +3+?+1 | |||
| 0.00097 | |||
|- | |||
| 0,13,23,26 | |||
| +3+?+1 | |||
| 0.00054 | |||
|- | |||
| 0,13,28,32 | |||
| +2+?+1 | |||
| 0.00055 | |||
|- | |||
| 0,14,17,24 | |||
| +3+?+2 | |||
| 0.00099 | |||
|- | |||
| 0,14,18,28 | |||
| +1+?+1 | |||
| 0.00043 | |||
|- | |||
| 0,14,21,26 | |||
| +2+?+1 | |||
| 0.00080 | |||
|- | |||
| 0,14,25,31 | |||
| +3+?+2 | |||
| 0.00054 | |||
|- | |||
| 0,14,27,30 | |||
| +3+?+1 | |||
| 0.00050 | |||
|- | |||
| 0,15,16,20 | |||
| +3+?+1 | |||
| 0.00055 | |||
|- | |||
| 0,15,17,28 | |||
| +1+?+1 | |||
| 0.00064 | |||
|- | |||
| 0,15,21,28 | |||
| +3+?+2 | |||
| 0.00045 | |||
|- | |||
| 0,15,22,32 | |||
| +1+?+1 | |||
| 0.00039 | |||
|- | |||
| 0,16,18,26 | |||
| +3+?+2 | |||
| 0.00049 | |||
|- | |||
| 0,16,19,25 | |||
| +2+?+1 | |||
| 0.00031 | |||
|- | |||
| 0,16,20,24 | |||
| +3+?+1 | |||
| 0.00018 | |||
|- | |||
| 0,16,25,32 | |||
| +3+?+2 | |||
| 0.00095 | |||
|- | |||
| 0,17,22,28 | |||
| +2+?+1 | |||
| 0.00091 | |||
|- | |||
| 0,17,23,27 | |||
| +3+?+1 | |||
| 0.00066 | |||
|- | |||
| 0,18,27,31 | |||
| +3+?+1 | |||
| 0.00095 | |||
|- | |||
| 0,19,21,28 | |||
| +2+?+1 | |||
| 0.00065 | |||
|- | |||
| 0,20,24,31 | |||
| +2+?+1 | |||
| 0.00078 | |||
|- | |||
| 0,21,22,32 | |||
| +3+?+2 | |||
| 0.00091 | |||
|- | |||
| 0,22,27,32 | |||
| +3+?+1 | |||
| 0.00038 | |||
|} | |||
== Instruments == | |||
[[Lumatone mapping for 33edo]] | |||
== Music == | |||
=== Modern renderings === | |||
; {{W|Johann Sebastian Bach}} | |||
* [https://www.youtube.com/watch?v=IhR9oFt5zx4 "Contrapunctus 4" from ''The Art of Fugue'', BWV 1080] (1742–1749) – rendered by Claudi Meneghin (2024) | |||
* [https://www.youtube.com/watch?v=ynPQPm_ekos "Contrapunctus 11" from ''The Art of Fugue'', BWV 1080] (1742–1749) – rendered by Claudi Meneghin (2024) | |||
=== 21st century === | |||
; [[Bryan Deister]] | |||
* [https://www.youtube.com/watch?v=swyP6tB78k0 ''groove 33edo''] (2023) | |||
* [https://www.youtube.com/watch?v=GypR6x_Ih1I ''33edo jam''] (2025) | |||
* [https://www.youtube.com/shorts/mkaaAJEyGFU ''33edo riff''] (2025) | |||
; [[Peter Kosmorsky]] | |||
* [https://www.youtube.com/watch?v=SXgUFxyuLZo ''Deluge''] | |||
; [[Budjarn Lambeth]] | |||
* [https://youtu.be/scCuGXnj5IY ''Music in 33EDO (33-Tone Equal Temperament) – Feb 2024''] (2024) | |||
; [[Claudi Meneghin]] | |||
* [https://www.youtube.com/watch?v=REkrbdesbLo ''Rising Canon on a Ground'', for Baroque Oboe, Bassoon, Violone] (2024) – ([https://www.youtube.com/watch?v=4fhcNPjFv14 for Organ]) | |||
* [https://www.youtube.com/watch?v=pkYN8SX6luY ''Lytel Twyelyghte Musicke (Little Twilight Music)'', for Brass and Timpani] (2024) | |||
; [[Relyt R]] | |||
* from ''Xuixo'' (2023) | |||
** "Nongenerate" [https://relytr.bandcamp.com/track/nondegenerate-33-edo Bandcamp] | [https://open.spotify.com/track/3e2WbgFlAYC4BccPGOWHMo Spotify] | |||
** "Kolmekymmentäkolme" [https://relytr.bandcamp.com/track/kolme-kymment-kolme-33-edo Bandcamp] | [https://open.spotify.com/track/4fx1yQ1RQtEu8EYhNUtN79 Spotify] | |||
; [[Chris Vaisvil]] | |||
* [http://chrisvaisvil.com/5-5-1-mode-of-33-equal-with-video/ 5 5 1 mode of 33 equal (with video)] [http://micro.soonlabel.com/33edo/20130827_551of33.mp3 play] | |||
; [[Xeno*n*]] | |||
* [https://www.youtube.com/watch?v=EPB1Rzjwguk ''Mysteries of Thirty-Three''] (2024) | |||
[[Category:Listen]] | |||
[[Category:Meantone]] | |||
[[Category:Subgroup temperaments]] |