|
|
(9 intermediate revisions by 7 users not shown) |
Line 1: |
Line 1: |
| '''[[Ed7|Division of the 7th harmonic]] into 34 equal parts''' (34ED7) is related to [[12edo|12 EDO]], but with the 7/1 rather than the 2/1 being just. The octave is about 11.0026 cents compressed and the step size is about 99.0831 cents. It is consistent to the [[11-odd-limit|11-integer-limit]], but not to the 12-integer-limit. In comparison, 12EDO is only consistent up to the [[9-odd-limit|10-integer-limit]].
| | {{Infobox ET}} |
| | {{ED intro}} |
|
| |
|
| {| class="wikitable" | | == Theory == |
| | 34ed7 is related to [[12edo]], but with the 7/1 rather than the 2/1 being just. This compresses the octave by 11.0026{{c}}, a small but significant deviation. It is consistent to the [[integer limit|11-integer-limit]], but not to the 12-integer-limit. In comparison, 12edo is only consistent up to the 10-integer-limit. |
| | |
| | === Harmonics === |
| | {{Harmonics in equal|34|7|1|intervals=integer}} |
| | {{Harmonics in equal|34|7|1|intervals=integer|start=12|columns=12|collapsed=true|title=Approximation of harmonics in 34ed7 (continued)}} |
| | |
| | === Subsets and supersets === |
| | Since 34 factors into 2 × 17, 34ed7 contains [[2ed7]] and [[17ed7]] as subsets. |
| | |
| | == Intervals == |
| | {| class="wikitable center-1 right-2" |
| | |+ style="font-size: 105%;" | Intervals of 34ed7 |
| |- | | |- |
| ! | degree | | ! # |
| ! | cents value | | ! Cents |
| ! | corresponding <br>JI intervals | | ! Approximate ratios |
| ! | comments
| |
| |- | | |- |
| | | 0
| | | 0 |
| | | 0.0000
| | | 0.0 |
| | | '''exact [[1/1]]''' | | | [[1/1]] |
| | |
| |
| |- | | |- |
| | | 1
| | | 1 |
| | | 99.0831
| | | 99.1 |
| | | [[18/17]]
| | | [[21/20]] |
| | |
| |
| |- | | |- |
| | | 2
| | | 2 |
| | | 198.1662
| | | 198.2 |
| | | 28/25 | | | [[9/8]] |
| | |
| |
| |- | | |- |
| | | 3
| | | 3 |
| | | 297.2493
| | | 297.2 |
| | | [[19/16]]
| | | [[6/5]] |
| | |
| |
| |- | | |- |
| | | 4
| | | 4 |
| | | 396.3325
| | | 396.3 |
| | | 49/39, 34/27
| | | [[5/4]] |
| | | pseudo-[[5/4]] | |
| |- | | |- |
| | | 5
| | | 5 |
| | | 495.4156
| | | 495.4 |
| | | [[4/3]]
| | | [[4/3]] |
| | |
| |
| |- | | |- |
| | | 6
| | | 6 |
| | | 594.4987
| | | 594.5 |
| | | [[24/17]]
| | | [[7/5]] |
| | |
| |
| |- | | |- |
| | | 7
| | | 7 |
| | | 693.5818
| | | 693.6 |
| | | 136/91
| | | [[3/2]] |
| | | pseudo-[[3/2]] | |
| |- | | |- |
| | | 8
| | | 8 |
| | | 792.6649
| | | 792.7 |
| | | [[30/19]], [[128/81]]
| | | [[8/5]] |
| | |
| |
| |- | | |- |
| | | 9
| | | 9 |
| | | 891.7480
| | | 891.7 |
| | | 77/46
| | | [[5/3]] |
| | | pseudo-[[5/3]] | |
| |- | | |- |
| | | 10
| | | 10 |
| | | 990.8311
| | | 990.8 |
| | | 85/48, 39/22 | | | [[7/4]] |
| | |
| |
| |- | | |- |
| | | 11
| | | 11 |
| | | 1089.9143
| | | 1089.9 |
| | | [[15/8]]
| | | [[15/8]] |
| | |
| |
| |- | | |- |
| | | 12
| | | 12 |
| | | 1188.9974 | | | 1189.0 |
| | | 143/72, 175/88 | | | [[2/1]] |
| | | pseudo-[[octave]]
| |
| |- | | |- |
| | | 13
| | | 13 |
| | | 1288.0805
| | | 1288.1 |
| | | [[21/20|21/10]], [[20/19|40/19]]
| | | [[21/10]] |
| | |
| |
| |- | | |- |
| | | 14
| | | 14 |
| | | 1387.1636
| | | 1387.2 |
| | | [[49/44|49/22]]
| | | [[9/4]] |
| | |
| |
| |- | | |- |
| | | 15
| | | 15 |
| | | 1486.2467
| | | 1486.2 |
| | | 33/14 | | | [[7/3]] |
| | |
| |
| |- | | |- |
| | | 16
| | | 16 |
| | | 1585.3298
| | | 1585.3 |
| | | [[5/2]]
| | | [[5/2]] |
| | |
| |
| |- | | |- |
| | | 17
| | | 17 |
| | | 1684.4130
| | | 1684.4 |
| | | 119/45, 45/17 | | | [[8/3]] |
| | | pseudo-[[8/3]]
| |
| |- | | |- |
| | | 18
| | | 18 |
| | | 1783.4961
| | | 1783.5 |
| | | [[14/5]]
| | | [[14/5]] |
| | |
| |
| |- | | |- |
| | | 19
| | | 19 |
| | | 1882.5792
| | | 1882.6 |
| | | 95/32, 98/33
| | | [[3/1]] |
| | | pseudo-[[3/1]] | |
| |- | | |- |
| | | 20
| | | 20 |
| | | 1981.6623
| | | 1981.7 |
| | | [[11/7|22/7]]
| | | [[22/7]] |
| | |
| |
| |- | | |- |
| | | 21
| | | 21 |
| | | 2080.7454
| | | 2080.7 |
| | | 133/40, [[10/3]] | | | [[10/3]] |
| | |
| |
| |- | | |- |
| | | 22
| | | 22 |
| | | 2179.8285
| | | 2179.8 |
| | | 88/25 | | | [[7/2]] |
| | |
| |
| |- | | |- |
| | | 23
| | | 23 |
| | | 2278.9116
| | | 2278.9 |
| | | [[28/15|56/15]]
| | | [[15/4]] |
| | |
| |
| |- | | |- |
| | | 24
| | | 24 |
| | | 2377.9948 | | | 2378.0 |
| | | 154/39, [[160/81|320/81]], 336/85 | | | [[4/1]] |
| | | pseudo-[[4/1]]
| |
| |- | | |- |
| | | 25
| | | 25 |
| | | 2477.0779
| | | 2477.1 |
| | | 46/11 | | | [[21/5]] |
| | |
| |
| |- | | |- |
| | | 26
| | | 26 |
| | | 2576.1610
| | | 2576.2 |
| | | 133/30 | | | [[9/2]] |
| | |
| |
| |- | | |- |
| | | 27
| | | 27 |
| | | 2675.2441
| | | 2675.2 |
| | | 169/36 | | | [[14/3]] |
| | |
| |
| |- | | |- |
| | | 28
| | | 28 |
| | | 2774.3272
| | | 2774.3 |
| | | 119/24
| | | [[5/1]] |
| | | pseudo-[[5/1]] | |
| |- | | |- |
| | | 29
| | | 29 |
| | | 2873.4103
| | | 2873.4 |
| | | [[21/16|21/4]]
| | | [[16/3]] |
| | | pseudo-[[16/3]] | |
| |- | | |- |
| | | 30
| | | 30 |
| | | 2972.4934
| | | 2972.5 |
| | | 39/7 | | | [[28/5]] |
| | |
| |
| |- | | |- |
| | | 31
| | | 31 |
| | | 3071.5766
| | | 3071.6 |
| | | [[28/19|112/19]] | | | [[6/1]] |
| | | pseudo-[[6/1]]
| |
| |- | | |- |
| | | 32
| | | 32 |
| | | 3170.6597
| | | 3170.7 |
| | | [[25/16|25/4]]
| | | [[25/4]] |
| | |
| |
| |- | | |- |
| | | 33
| | | 33 |
| | | 3269.7428
| | | 3269.7 |
| | | 119/18 | | | [[20/3]] |
| | |
| |
| |- | | |- |
| | | 34
| | | 34 |
| | | 3368.8259
| | | 3368.8 |
| | | '''exact [[7/1]]''' | | | [[7/1]] |
| | | [[7/4|harmonic seventh]] plus two octaves
| |
| |} | | |} |
|
| |
|
| == Regular temperaments == | | == Regular temperaments == |
| {{See also|16ed5/2 #Regular temperaments}} | | {{See also| Quintaleap family }} |
| | |
| 34ED7 can also be thought of as a [[generator]] of the 11-limit temperament which tempers out 896/891, 1375/1372, and 4375/4356, which is a [[cluster temperament]] with 12 clusters of notes in an octave (''quintupole'' temperament). This temperament is supported by [[12edo|12EDO]], [[109edo|109EDO]], and [[121edo|121EDO]] among others.
| |
| | |
|
| |
|
| ; <font style="font-size: 1.15em">[[High badness temperaments #Quintaleap|Quintaleap]] (12&121)</font>
| | 34ed7 can also be thought of as a [[generator]] of the 11-limit temperament which tempers out 896/891, 1375/1372, and 4375/4356, which is a [[cluster temperament]] with 12 clusters of notes in an octave ([[quintupole]] temperament). This temperament is supported by [[12edo]], [[109edo]], and [[121edo]] among others. |
| '''5-limit'''<br>
| |
| Comma: {{monzo|37 -16 -5}} = 137438953472/134521003125<br>
| |
| Mapping: [{{val|1 2 1}}, {{val|0 -5 16}}]<br>
| |
| POTE generator: ~135/128 = 99.267<br>
| |
| Vals: 12, 85, 97, 109, 121, 133, 278c, 411bc, 544bc<br>
| |
| Badness: 0.444506<br><br>
| |
| ; <font style="font-size: 1.15em">[[Octagar temperaments #Quintupole|Quintupole]] (12&121)</font>
| |
| '''7-limit'''<br>
| |
| Comma list: 4000/3969, 458752/455625<br>
| |
| Mapping: [{{val|1 2 1 0}}, {{val|0 -5 16 34}}]<br>
| |
| POTE generator: ~135/128 = 99.175<br>
| |
| Vals: 12, 97, 109, 121<br>
| |
| Badness: 0.111620<br><br>
| |
| '''11-limit'''<br>
| |
| Comma list: 896/891, 1375/1372, 4375/4356<br>
| |
| Mapping: [{{val|1 2 1 0 -1}}, {{val|0 -5 16 34 54}}]<br>
| |
| POTE generator: ~132/125 = 99.156<br>
| |
| Vals: 12, 109, 121, 351bde, 472bdee<br>
| |
| Badness: 0.056501<br><br>
| |
| '''13-limit'''<br>
| |
| Comma list: 352/351, 364/363, 625/624, 2704/2695<br>
| |
| Mapping: [{{val|1 2 1 0 -1 -2}}, {{val|0 -5 16 34 54 69}}]<br>
| |
| POTE generator: ~55/52 = 99.165<br>
| |
| Vals: 12f, 109, 121<br>
| |
| Badness: 0.038431<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 256/255, 352/351, 364/363, 375/374, 442/441<br>
| |
| Mapping: [{{val|1 2 1 0 -1 -2 5}}, {{val|0 -5 16 34 54 69 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.172<br>
| |
| Vals: 12f, 109, 121<br>
| |
| Badness: 0.028721<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 190/189, 256/255, 352/351, 361/360, 364/363, 375/374<br>
| |
| Mapping: [{{val|1 2 1 0 -1 -2 5 4}}, {{val|0 -5 16 34 54 69 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.164<br>
| |
| Vals: 12f, 109, 121<br>
| |
| Badness: 0.023818<br><br>
| |
|
| |
|
| == See also == | | == See also == |
| * [[12edo|12EDO]] - relative EDO | | * [[12edo]] – relative edo |
| * [[19ed3|19ED3]] - relative ED3 | | * [[19edt]] – relative edt |
| * [[28ed5|28ED5]] - relative ED5 | | * [[28ed5]] – relative ed5 |
| * [[31ed6|31ED6]] - relative ED6 | | * [[31ed6]] – relative ed6 |
| * [[40ed10|40ED10]] - relative ED10 | | * [[40ed10]] – relative ed10 |
| * [[42ed11|42ED11]] - relative ED11 | | * [[42ed11]] – relative ed11 |
| * [[18/17s equal temperament|AS18/17]] - relative [[AS|ambitonal sequence]] | | * [[76ed80]] – close to the zeta-optimized tuning for 12edo |
| | * [[1ed18/17|AS18/17]] – relative [[AS|ambitonal sequence]] |
|
| |
|
| [[Category:Ed7]] | | [[Category:12edo]] |
| [[Category:Edonoi]]
| |