40ed10: Difference between revisions
No edit summary |
ArrowHead294 (talk | contribs) |
||
(16 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
40ed10 is related to [[12edo]], but with 10/1 instead of 2/1 being just. The octave is compressed from pure by 4.106{{c}}, a small but significant deviation. | |||
=== Harmonics === | |||
{{Harmonics in equal|40|10|1|intervals=integer}} | |||
{{Harmonics in equal|40|10|1intervals=integer|start=12|columns=12|collapsed=1|title=Approximation of harmonics in 40ed10 (continued)}} | |||
< | === Subsets and supersets === | ||
Since 40 factors into 2<sup>3</sup> × 5, 40ed10 has subset ed10's {{EDs|equave=10| 2, 4, 5, 8, 10, and 20 }}. | |||
=== Miscellany === | |||
It is possible to call this division a form of '''kilobyte tuning''', as | |||
<math>2^{10} \approx 10^{3} = 1024 \approx 1000</math>; | <math>2^{10} \approx 10^{3} = 1024 \approx 1000</math>; | ||
which lies in the | which lies in the obsolete practice of using a decimal prefix to an otherwise binary unit of information. | ||
== | == Intervals == | ||
{| class="wikitable" | {| class="wikitable center-1 right-2" | ||
|- | |- | ||
! | ! # | ||
! | ! Cents | ||
! | ! Approximate ratios | ||
|- | |- | ||
| 0 | |||
| 0.0 | |||
| | | [[1/1]] | ||
|- | |- | ||
| 1 | |||
| 99.7 | |||
| [[18/17]] | |||
|- | |- | ||
| 2 | |||
| 199.3 | |||
| [[9/8]] | |||
| | |||
|- | |- | ||
| 3 | |||
| | | 299.0 | ||
| [[6/5]] | |||
|- | |- | ||
| 4 | |||
| 398.6 | |||
| | | [[5/4]] | ||
|- | |- | ||
| 5 | |||
| 498.3 | |||
| [[4/3]] | |||
|- | |- | ||
| 6 | |||
| 597.9 | |||
| [[7/5]] | |||
|- | |- | ||
| 7 | |||
| 697.6 | |||
| [[3/2]] | |||
| | |||
|- | |- | ||
| 8 | |||
| 797.3 | |||
| | | [[8/5]] | ||
|- | |- | ||
| 9 | |||
| 896.9 | |||
| | | [[5/3]] | ||
|- | |- | ||
| 10 | |||
| 996.6 | |||
| [[7/4]] | |||
|- | |- | ||
| 11 | |||
| 1096.2 | |||
| [[15/8]] | |||
|- | |- | ||
| 12 | |||
| 1195.9 | |||
| [[2/1]] | |||
| | |||
|- | |- | ||
| 13 | |||
| 1295.6 | |||
| [[17/8]] | |||
| | |||
|- | |- | ||
| 14 | |||
| 1395.2 | |||
| [[9/4]] | |||
|- | |- | ||
| 15 | |||
| 1494.9 | |||
| [[12/5]] | |||
| | |||
|- | |- | ||
| 16 | |||
| 1594.5 | |||
| [[5/2]] | |||
| | |||
|- | |- | ||
| 17 | |||
| 1694.2 | |||
| [[8/3]] | |||
| | |||
|- | |- | ||
| 18 | |||
| 1793.8 | |||
| [[14/5]] | |||
| | |||
|- | |- | ||
| 19 | |||
| 1893.5 | |||
| [[3/1]] | |||
|- | |- | ||
| 20 | |||
| 1993.2 | |||
| [[16/5]] | |||
| | |||
|- | |- | ||
| 21 | |||
| 2092.8 | |||
| | | [[10/3]] | ||
|- | |- | ||
| 22 | |||
| 2192.5 | |||
| [[7/2]] | |||
| | |||
|- | |- | ||
| 23 | |||
| 2292.1 | |||
| [[15/4]] | |||
| | |||
|- | |- | ||
| 24 | |||
| 2391.8 | |||
| [[4/1]] | |||
| | |||
|- | |- | ||
| 25 | |||
| 2491.4 | |||
| [[17/4]] | |||
| | |||
|- | |- | ||
| 26 | |||
| 2591.1 | |||
| | | [[9/2]] | ||
|- | |- | ||
| 27 | |||
| 2690.8 | |||
| 19/4 | |||
| | |||
|- | |- | ||
| 28 | |||
| 2790.4 | |||
| [[5/1]] | |||
| | |||
|- | |- | ||
| 29 | |||
| 2890.1 | |||
| | | [[16/3]] | ||
|- | |- | ||
| 30 | |||
| 2989.7 | |||
| | | 17/3 | ||
|- | |- | ||
| 31 | |||
| 3089.4 | |||
| [[6/1]] | |||
| | |||
|- | |- | ||
| 32 | |||
| 3189.1 | |||
| 19/3 | |||
| | |||
|- | |- | ||
| 33 | |||
| 3288.7 | |||
| 20/3 | |||
| | |||
|- | |- | ||
| 34 | |||
| 3388.4 | |||
| | | [[7/1]] | ||
|- | |- | ||
| 35 | |||
| 3488.0 | |||
| [[15/2]] | |||
|- | |- | ||
| 36 | |||
| 3587.7 | |||
| [[8/1]] | |||
| | |||
|- | |- | ||
| 37 | |||
| 3687.3 | |||
| [[17/2]] | |||
| | |||
|- | |- | ||
| 38 | |||
| | | 3787.0 | ||
| [[9/1]] | |||
| | |||
|- | |- | ||
| 39 | |||
| 3886.7 | |||
| | | 19/2 | ||
|- | |- | ||
| 40 | |||
| 3986.3 | |||
| | | [[10/1]] | ||
|} | |} | ||
[[Category: | == Regular temperaments == | ||
[[Category: | 40ed10 can also be thought of as a [[generator]] of the 2.3.5.17.19 [[subgroup temperaments|subgroup temperament]] which tempers out 4624/4617, 6144/6137, and 6885/6859, which is a [[cluster temperament]] with 12 clusters of notes in an octave (''quintilischis'' temperament). This temperament is supported by {{Optimal ET sequence| 12-, 253-, 265-, 277-, 289-, 301-, 313-, and 325edo }}. | ||
Tempering out 400/399 (equating 20/19 and 21/20) leads to [[quintilipyth]] (12 & 253), and tempering out 476/475 (equating 19/17 with 28/25) leads to [[quintaschis]] (12 & 289). | |||
== See also == | |||
* [[7edf]] – relative edf | |||
* [[12edo]] – relative edo | |||
* [[19edt]] – relative edt | |||
* [[28ed5]] – relative ed5 | |||
* [[31ed6]] – relative ed6 | |||
* [[34ed7]] – relative ed7 | |||
* [[42ed11]] – relative ed11 | |||
* [[76ed80]] – close to the zeta-optimized tuning for 12edo | |||
* [[1ed18/17|AS18/17]] – relative [[AS|ambitonal sequence]] | |||
[[Category:12edo]] | |||
[[Category:Sonifications]] |