|
|
(234 intermediate revisions by 50 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{interwiki |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | | de = 23edo |
| : This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2011-06-02 03:04:48 UTC</tt>.<br>
| | | en = 23edo |
| : The original revision id was <tt>233694570</tt>.<br>
| | | es = 23 EDO |
| : The revision comment was: <tt></tt><br>
| | | ja = 23平均律 |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| | }} |
| <h4>Original Wikitext content:</h4>
| | {{Infobox ET}} |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=<span style="color: #007a1b;"><span style="background-color: #000000; color: #009927; font-size: 109%;">23 tone equal temperament</span></span>=
| | {{Wikipedia|23 equal temperament}} |
| | {{ED intro}} |
|
| |
|
| 23et, or 23-EDO, is a tuning system which divides the [[octave]] into 23 equal parts of approximately 52.173913 cents. It has good approximations for 5/3, 11/7, 13 and 17, allowing it to represent the 2.5/3.11/7.13.17 [[just intonation subgroup]]. If to this subgroup is added the commas of 17-limit 46et, the larger 17-limit [[k*N subgroups|2*23 subgroup]] 2.9.15.21.33.13.17 is obtained. This is the largest subgroup on which 23 has the same tuning and commas as does 17-limit 46, and may be regarded as a basis for analyzing the harmony of 23-EDO so far as approximations to just intervals goes.
| | == Theory == |
| | 23edo is significant in that it is the last edo that has no [[5L 2s|diatonic]] perfect fifths and not even [[5edo]] or [[7edo]] fifths. It is also the last edo that fails to approximate the [[3/1|3rd]], [[5/1|5th]], [[7/1|7th]], and [[11/1|11th]] [[harmonic]]s within 20 cents, which makes it well-suited for musicians seeking to explore harmonic territory that is unusual even for the average microtonalist. Oddly, despite the fact that it fails to approximate these harmonics, it approximates the intervals between them ([[5/3]], [[7/3]], [[11/3]], [[7/5]], [[11/5]], [[11/7]]) and combinations of them ([[15/8]], [[21/16]], [[33/32]], [[35/32]], [[55/32]], [[77/64]]) very well. The lowest harmonics well-approximated by 23edo are [[9/1|9]], [[13/1|13]], [[15/1|15]], [[17/1|17]], [[21/1|21]], [[23/1|23]], [[31/1|31]], [[33/1|33]] and [[35/1|35]]. |
|
| |
|
| 23-EDO was proposed by ethnomusicologist [[http://en.wikipedia.org/wiki/Erich_von_Hornbostel|Erich von Hornbostel]] as the result of continuing a circle of "blown" fifths of ~678-cent fifths that (he argued) resulted from "overblowing" a bamboo pipe.
| | === Mapping === |
| | As with [[9edo]], [[16edo]], and [[25edo]], one way to treat 23edo is as a tuning of the [[mavila]] temperament, tempering out the "comma" of [[135/128]] and equating three acute [[4/3]]'s with 5/1 (related to the Armodue system). This means mapping "[[3/2]]" to 13 degrees of 23, and results in a 7-note [[2L 5s|antidiatonic]] scale of 3–3–4–3–3–3–4 (in steps of 23edo), which extends to a 9-note [[7L 2s|superdiatonic]] scale (3–3–3–1–3–3–3–3–1). One can notate 23edo using the [[Armodue]] system, but just like notating 17edo with familiar diatonic notation, flats will be lower in pitch than enharmonic sharps, because in 23edo, the "Armodue 6th" is sharper than it is in 16edo, just like the diatonic 5th in 17edo is sharper than in 12edo. In other words, 2b is lower in pitch than 1#, just like how in 17edo Eb is lower than D#. |
|
| |
|
| 23-EDO is also significant in that it is the largest EDO that fails to approximate the 3rd, 5th, and 7th harmonics within 20 cents, which makes it well-suited for musicians seeking to explore unusual harmonic territory. Oddly, despite the fact that it fails to approximate these harmonics, it approximates the intervals between them (5/3, 7/3, and 7/5) very well. The lowest harmonics well-approximated by 23-EDO are 13, 17, 21, and 23.
| | However, one can also map 3/2 to 14 degrees of 23edo without significantly increasing the error, taking us to a [[7-limit]] temperament where two broad 3/2's equals 7/3, meaning 28/27 is tempered out, and six 4/3's octave-reduced equals 5/4, meaning 4096/3645 is tempered out. Both of these are very large commas, so this is not at all an accurate temperament, but it is related to [[13edo]] and [[18edo]] and produces [[mos scale]]s of 5 and 8 notes: 5–5–4–5–4 ([[3L 2s|antipentic]]) and 4–1–4–1–4–4–1–4 (the "quartertone" version of the [[Easley Blackwood Jr.|Blackwood]]/[[Paul Rapoport|Rapoport]]/[[Erv Wilson|Wilson]] 13edo "subminor" scale). Alternatively we can treat this temperament as a 2.9.21 subgroup, and instead of calling 9 degrees of 23edo a sub-"4/3", we can call it 21/16. Here three 21/16's gets us to 9/4, meaning 1029/1024 is tempered out. This allows us to treat a triad of 0–4–9 degrees of 23edo as an approximation to 16:18:21, and 0–5–9 as 1/(16:18:21); both of these triads are abundant in the 8-note mos scale. |
|
| |
|
| Like 9-EDO, 16-EDO, and 25-EDO, one way to treat 23-EDO is as a Pelogic temperament, tempering out the "comma" of 135/128 and equating three sharp 4/3's with 5/1 (related to the Armodue system). This means mapping 3/2 to 13 degrees of 23, and results in a 7-note "anti-diatonic" scale of 3 3 4 3 3 3 4 (in steps of 23-EDO), which extends to 9 notes (3 3 3 1 3 3 3 3 1).
| | 23edo has good approximations for [[5/3]], [[11/7]], 13 and 17, among many others, allowing it to represent the 2.5/3.11/7.13.17 [[just intonation subgroup]]. If to this subgroup is added the commas of no-19's [[23-limit]] [[46edo]], the larger no-19's 23-limit [[k*N subgroups|2*23 subgroup]] 2.9.15.21.33.13.17.23 is obtained. This is the largest subgroup on which 23 has the same tuning and commas as does no-19's 23-limit 46edo, and may be regarded as a basis for analyzing the harmony of 23edo so far, as approximations to just intervals goes. If one dares to take advantage of this harmony by using 23edo as a period, you get [[icositritonic]], a [[23rd-octave temperaments|23rd-octave temperament]], so that the harmony of 23edo is adequately explained by what harmonies you can achieve using only periods and zero generators. |
|
| |
|
| However, one can also map 3/2 to 14 degrees of 23-EDO without significantly increasing the error, taking us to a 7-limit temperament where two 3/2's equals 7/3, meaning 28/27 is tempered out, and six 4/3's octave-reduced equals 5/4, meaning 4096/3645 is tempered out. Both of these are very large commas, so this is not at all an accurate temperament, but it is related to 13-EDO and 18-EDO and produces MOS scales of 5 and 8 notes: 5 5 4 5 4 (the "anti-pentatonic") and 4 1 4 1 4 4 1 4 (the "quarter-tone" version of the Blackwood/[[http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29|Rapoport]]/Wilson 13-EDO "subminor" scale). Alternatively we can treat this temperament as a 2.9.21 subgroup, and instead of calling 9 degrees of 23-EDO a "4/3", we can call it 21/16. Here three 21/16's gets us to 9/4, meaning 1029/1024 is tempered out. This allows us to treat a triad of 0-4-9 degrees of 23-EDO as an approximation to 16:18:21, and 0-5-9 as 1/(16:18:21); both of these triads are abundant in the 8-note MOS scale.
| | See ''[[Harmony of 23edo]]'' for more details. |
|
| |
|
| ==Intervals== | | === Odd harmonics === |
| || [[Degree]]s of 23-EDO || [[Cent]]s value ||
| | {{Harmonics in equal|23}} |
| || 0 || 0 ||
| |
| || 1 || 52.1739 ||
| |
| || 2 || 104.3478 ||
| |
| || 3 || 156.5217 ||
| |
| || 4 || 208.6957 ||
| |
| || 5 || 260.8696 ||
| |
| || 6 || 313.0435 ||
| |
| || 7 || 365.2174 ||
| |
| || 8 || 417.3913 ||
| |
| || 9 || 469.5652 ||
| |
| || 10 || 521.7391 ||
| |
| || 11 || 573.913 ||
| |
| || 12 || 626.087 ||
| |
| || 13 || 678.2609 ||
| |
| || 14 || 730.4348 ||
| |
| || 15 || 782.6087 ||
| |
| || 16 || 834.7826 ||
| |
| || 17 || 886.9565 ||
| |
| || 18 || 939.1304 ||
| |
| || 19 || 991.3043 ||
| |
| || 20 || 1043.4783 ||
| |
| || 21 || 1095.6522 ||
| |
| || 22 || 1147.8261 ||
| |
| [[image:Ciclo_Icositrifonía.png width="492" height="490" caption="Intervallic Cycle of 23 steps Equal per Octave"]]
| |
| == ==
| |
| ==Commas== | |
| 23 EDO tempers out the following commas. (Note: This assumes the val < 23 36 53 65 80 85 |.) Also note the discussion above, where there are some commas mentioned that are not in the standard comma list (e.g., 28/27).
| |
| ||~ Comma ||~ Monzo ||~ Value (Cents) ||~ Name 1 ||~ Name 2 ||~ Name 3 ||
| |
| ||= 135/128 ||< | -7 3 1 > ||> 92.18 ||= Major Chroma ||= Major Limma ||= Pelogic Comma ||
| |
| ||= 15625/15552 ||< | -6 -5 6 > ||> 8.11 ||= Kleisma ||= Semicomma Majeur ||= ||
| |
| ||= 36/35 ||< | 2 2 -1 -1 > ||> 48.77 ||= Septimal Quarter Tone ||= ||= ||
| |
| ||= 525/512 ||< | -9 1 2 1 > ||> 43.41 ||= Avicennma ||= Avicenna's Enharmonic Diesis ||= ||
| |
| ||= 4000/3969 ||< | 5 -4 3 -2 > ||> 13.47 ||= Octagar ||= ||= ||
| |
| ||= 6144/6125 ||< | 11 1 -3 -2 > ||> 5.36 ||= Porwell ||= ||= ||
| |
| ||= 100/99 ||< | 2 -2 2 0 -1 > ||> 17.40 ||= Ptolemisma ||= ||= ||
| |
| ||= 441/440 ||< | -3 2 -1 2 -1 > ||> 3.93 ||= Werckisma ||= ||= ||
| |
|
| |
|
| ===INSTRUMENTS=== | | === Octave stretch === |
| [[image:Icositriphonic_Bass.JPG width="594" height="216"]] | | Some approximations can be improved by octave stretching. See ''[[23edo and octave stretching]]'' for more details. |
| //An Icositriphonic Bass. 23-EDO Bass by Tútim Deft Wafil.//
| |
|
| |
|
| [[image:Icositriphonic_Guitar.PNG width="601" height="305"]] | | === Subsets and supersets === |
| //An Icositriphonic 8-string Guitar. 23-EDO Guitar by Ron Sword.//
| | 23edo is the 9th [[prime edo]], following [[19edo]] and coming before [[29edo]], so it does not contain any nontrivial subset edos, though it contains [[23ed4]]. 46edo, which doubles it, considerably improves most of its approximations of lower harmonics. |
|
| |
|
| ==**23 tone [[Equal Modes]]:**== | | === Miscellany === |
| 10 10 3
| | 23edo was proposed by ethnomusicologist {{w|Erich von Hornbostel}} as the result of continuing a circle of "blown" fifths of ~678-cent fifths that (he argued) resulted from "overblowing" a bamboo pipe. |
| 9 9 5
| |
| 8 8 7
| |
| 7 7 7 2
| |
| 7 2 7 7
| |
| 6 6 6 5
| |
| 6 5 6 6
| |
| 5 4 5 5 4
| |
| 5 4 5 4 5
| |
| 7 1 7 7 1
| |
| 7 1 7 1 7
| |
| 5 5 5 5 3
| |
| 5 3 5 5 5
| |
| 4 4 4 4 4 3
| |
| 4 3 4 4 4 4
| |
| 5 1 5 1 5 1 5
| |
| 3 3 3 5 3 3 3
| |
| 4 3 3 3 3 3 4
| |
| 3 4 3 3 4 3 3
| |
| 3 3 4 3 3 3 4
| |
| 3 3 3 4 3 3 4
| |
| 3 3 3 4 3 4 3
| |
| 2 5 2 5 2 5 2
| |
| 4 1 4 4 1 4 4 1
| |
| 3 3 3 3 3 3 3 2
| |
| 3 2 3 3 3 3 3 3
| |
| **3 3 3 1 3 3 3 3 1**
| |
| 3 3 1 3 3 3 1 3 3
| |
| 3 2 3 2 3 2 3 2 3
| |
| 2 2 3 2 2 3 2 2 2 3
| |
| **3 1 3 1 3 1 3 1 3 1 3**
| |
| 2 2 2 1 2 2 2 1 2 2 2 2 1
| |
| 2 2 1 2 2 1 2 2 1 2 2 1 2 1
| |
| **2 1 2 2 1 2 2 1 2 2 1 2 2 1**
| |
| 1 1 1 4 1 1 1 1 4 1 1 1 1 4
| |
| 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
| |
| **2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1**
| |
| 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1
| |
|
| |
|
| =Compositions= | | == Selected just intervals == |
| [[http://home.vicnet.net.au/%7Eepoetry/family.mp3|The Family Supper]] by Warren Burt
| | {{Q-odd-limit intervals|23}} |
| __Allegro Moderato__ by Easley Blackwood
| |
| [[http://www.youtube.com/watch?v=Hqst8MaRiYM|Icositriphonic Heptatonic MOS]] by Igliashon Jones
| |
| [[http://soundclick.com/share?songid=5683734|A Walk Through the Valley of Ashes]] by Iglashion Jones
| |
| [[http://www.nonoctave.com/tunes/CosmicChamber.mp3|Cosmic Chamber]] by X. J. Scott
| |
| [[http://www.nonoctave.com/tunes/Daisies.mp3|Daisies on the Beach]] by X. J. Scott
| |
| <span style="background-attachment: initial; background-clip: initial; background-color: initial; background-origin: initial; background-position: 100% 50%; background-repeat: no-repeat no-repeat; cursor: pointer; padding-right: 10px;">[[http://www.akjmusic.com/audio/boogie_pie.mp3|Boogie Pie]]</span>by Aaron Krister Johnson
| |
|
| |
|
| =Books= | | == Notation == |
| [[image:Libro_Icositrifónico.PNG width="242" height="294"]]
| | ===Conventional notation === |
| | {{Mavila}} |
|
| |
|
| =Keyboards= | | ===Sagittal notation=== |
| | ====Best fifth notation==== |
| | This notation uses the same sagittal sequence as EDOs [[28edo#Sagittal notation|28]] and [[33edo#Sagittal notation|33]]. |
|
| |
|
| [[image:Teclado_Icositrifónico.PNG width="567" height="297" caption="A classic visualization of an Alternative 1/3-tone Keyboard. Armodue-Hornbostel Family Musical Systems"]]</pre></div>
| | <imagemap> |
| <h4>Original HTML content:</h4>
| | File:23-EDO_Sagittal.svg |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>23edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x23 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #007a1b;"><span style="background-color: #000000; color: #009927; font-size: 109%;">23 tone equal temperament</span></span></h1>
| | desc none |
| <br />
| | rect 80 0 300 50 [[Sagittal_notation]] |
| 23et, or 23-EDO, is a tuning system which divides the <a class="wiki_link" href="/octave">octave</a> into 23 equal parts of approximately 52.173913 cents. It has good approximations for 5/3, 11/7, 13 and 17, allowing it to represent the 2.5/3.11/7.13.17 <a class="wiki_link" href="/just%20intonation%20subgroup">just intonation subgroup</a>. If to this subgroup is added the commas of 17-limit 46et, the larger 17-limit <a class="wiki_link" href="/k%2AN%20subgroups">2*23 subgroup</a> 2.9.15.21.33.13.17 is obtained. This is the largest subgroup on which 23 has the same tuning and commas as does 17-limit 46, and may be regarded as a basis for analyzing the harmony of 23-EDO so far as approximations to just intervals goes.<br />
| | rect 367 0 527 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] |
| <br />
| | rect 20 80 367 106 [[Fractional_3-limit_notation#Bad-fifths_limma-fraction_notation | limma-fraction notation]] |
| 23-EDO was proposed by ethnomusicologist <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Erich_von_Hornbostel" rel="nofollow">Erich von Hornbostel</a> as the result of continuing a circle of &quot;blown&quot; fifths of ~678-cent fifths that (he argued) resulted from &quot;overblowing&quot; a bamboo pipe.<br />
| | default [[File:23-EDO_Sagittal.svg]] |
| <br />
| | </imagemap> |
| 23-EDO is also significant in that it is the largest EDO that fails to approximate the 3rd, 5th, and 7th harmonics within 20 cents, which makes it well-suited for musicians seeking to explore unusual harmonic territory. Oddly, despite the fact that it fails to approximate these harmonics, it approximates the intervals between them (5/3, 7/3, and 7/5) very well. The lowest harmonics well-approximated by 23-EDO are 13, 17, 21, and 23.<br />
| |
| <br />
| |
| Like 9-EDO, 16-EDO, and 25-EDO, one way to treat 23-EDO is as a Pelogic temperament, tempering out the &quot;comma&quot; of 135/128 and equating three sharp 4/3's with 5/1 (related to the Armodue system). This means mapping 3/2 to 13 degrees of 23, and results in a 7-note &quot;anti-diatonic&quot; scale of 3 3 4 3 3 3 4 (in steps of 23-EDO), which extends to 9 notes (3 3 3 1 3 3 3 3 1).<br />
| |
| <br />
| |
| However, one can also map 3/2 to 14 degrees of 23-EDO without significantly increasing the error, taking us to a 7-limit temperament where two 3/2's equals 7/3, meaning 28/27 is tempered out, and six 4/3's octave-reduced equals 5/4, meaning 4096/3645 is tempered out. Both of these are very large commas, so this is not at all an accurate temperament, but it is related to 13-EDO and 18-EDO and produces MOS scales of 5 and 8 notes: 5 5 4 5 4 (the &quot;anti-pentatonic&quot;) and 4 1 4 1 4 4 1 4 (the &quot;quarter-tone&quot; version of the Blackwood/<a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Paul_Rapoport_%28music_critic%29" rel="nofollow">Rapoport</a>/Wilson 13-EDO &quot;subminor&quot; scale). Alternatively we can treat this temperament as a 2.9.21 subgroup, and instead of calling 9 degrees of 23-EDO a &quot;4/3&quot;, we can call it 21/16. Here three 21/16's gets us to 9/4, meaning 1029/1024 is tempered out. This allows us to treat a triad of 0-4-9 degrees of 23-EDO as an approximation to 16:18:21, and 0-5-9 as 1/(16:18:21); both of these triads are abundant in the 8-note MOS scale.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x23 tone equal temperament-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2>
| |
|
| |
|
| |
|
| <table class="wiki_table">
| | ====Second-best fifth notation==== |
| <tr>
| | This notation uses the same sagittal sequence as EDOs [[30edo#Sagittal notation|30]], [[37edo#Sagittal notation|37]], and [[44edo#Sagittal notation|44]]. |
| <td><a class="wiki_link" href="/Degree">Degree</a>s of 23-EDO<br />
| |
| </td>
| |
| <td><a class="wiki_link" href="/Cent">Cent</a>s value<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>0<br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>52.1739<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>104.3478<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>156.5217<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>208.6957<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>260.8696<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>313.0435<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>365.2174<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>417.3913<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>469.5652<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>521.7391<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>573.913<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>626.087<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>678.2609<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>730.4348<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>782.6087<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>834.7826<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>886.9565<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>939.1304<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>991.3043<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>1043.4783<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>1095.6522<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>1147.8261<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <!-- ws:start:WikiTextLocalImageRule:292:&lt;img src=&quot;/file/view/Ciclo_Icositrifon%C3%ADa.png/255957914/492x490/Ciclo_Icositrifon%C3%ADa.png&quot; alt=&quot;Intervallic Cycle of 23 steps Equal per Octave&quot; title=&quot;Intervallic Cycle of 23 steps Equal per Octave&quot; style=&quot;height: 490px; width: 492px;&quot; /&gt; --><table class="captionBox"><tr><td class="captionedImage"><img src="/file/view/Ciclo_Icositrifon%C3%ADa.png/255957914/492x490/Ciclo_Icositrifon%C3%ADa.png" alt="Ciclo_Icositrifonía.png" title="Ciclo_Icositrifonía.png" style="height: 490px; width: 492px;" /></td></tr><tr><td class="imageCaption">Intervallic Cycle of 23 steps Equal per Octave</td></tr></table><!-- ws:end:WikiTextLocalImageRule:292 --><br />
| | <imagemap> |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><!-- ws:end:WikiTextHeadingRule:4 --> </h2>
| | File:23b_Sagittal.svg |
| <!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="x23 tone equal temperament-Commas"></a><!-- ws:end:WikiTextHeadingRule:6 -->Commas</h2>
| | desc none |
| 23 EDO tempers out the following commas. (Note: This assumes the val &lt; 23 36 53 65 80 85 |.) Also note the discussion above, where there are some commas mentioned that are not in the standard comma list (e.g., 28/27).<br />
| | rect 80 0 300 50 [[Sagittal_notation]] |
| | rect 375 0 535 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] |
| | rect 20 80 375 106 [[Fractional_3-limit_notation#Bad-fifths_apotome-fraction_notation | apotome-fraction notation]] |
| | default [[File:23b_Sagittal.svg]] |
| | </imagemap> |
|
| |
|
| | === Armodue notation === |
| | Armodue notation is a nonatonic notation that uses the numbers 1-9 as note names. |
|
| |
|
| <table class="wiki_table">
| | {| class="wikitable center-all right-1 right-3 left-10" |
| <tr>
| | |- |
| <th>Comma<br />
| | ! [[Degree]] |
| </th>
| | ! [[Cent]]s |
| <th>Monzo<br />
| | ! Approximate <br> Ratios <ref>Based on treating 23-EDO as a 2.9.15.21.33.13.17 subgroup temperament; other approaches are possible.</ref> |
| </th>
| | ! colspan="2" | Major wider <br> than minor |
| <th>Value (Cents)<br />
| | ! colspan="2" | Major narrower <br> than minor |
| </th>
| | ! Armodue <br> Notation |
| <th>Name 1<br />
| | ! Notes |
| </th>
| | |- |
| <th>Name 2<br />
| | | 0 |
| </th>
| | | 0.000 |
| <th>Name 3<br />
| | | 1/1 |
| </th>
| | | P1 || D |
| </tr>
| | | P1 || D |
| <tr>
| | | 1 |
| <td style="text-align: center;">135/128<br />
| | | |
| </td>
| | |- |
| <td style="text-align: left;">| -7 3 1 &gt;<br />
| | | 1 |
| </td>
| | | 52.174 |
| <td style="text-align: right;">92.18<br />
| | | 33/32, 34/33 |
| </td>
| | | A1 || D# |
| <td style="text-align: center;">Major Chroma<br />
| | | d1 || Db |
| </td>
| | | 2b |
| <td style="text-align: center;">Major Limma<br />
| | | |
| </td>
| | |- |
| <td style="text-align: center;">Pelogic Comma<br />
| | | 2 |
| </td>
| | | 104.348 |
| </tr>
| | | 17/16, 16/15, 18/17 |
| <tr>
| | | d2 || Eb |
| <td style="text-align: center;">15625/15552<br />
| | | A2 || E# |
| </td>
| | | 1# |
| <td style="text-align: left;">| -6 -5 6 &gt;<br />
| | | Less than 1 cent off [[17/16]] |
| </td>
| | |- |
| <td style="text-align: right;">8.11<br />
| | | 3 |
| </td>
| | | 156.522 |
| <td style="text-align: center;">Kleisma<br />
| | | 11/10, 12/11, 35/32 |
| </td>
| | | m2 || E |
| <td style="text-align: center;">Semicomma Majeur<br />
| | | M2 || E |
| </td>
| | | 2 |
| <td style="text-align: center;"><br />
| | | |
| </td>
| | |- |
| </tr>
| | | 4 |
| <tr>
| | | 208.696 |
| <td style="text-align: center;">36/35<br />
| | | 9/8, 44/39 |
| </td>
| | | M2 || E# |
| <td style="text-align: left;">| 2 2 -1 -1 &gt;<br />
| | | m2 || Eb |
| </td>
| | | 3b |
| <td style="text-align: right;">48.77<br />
| | | |
| </td>
| | |- |
| <td style="text-align: center;">Septimal Quarter Tone<br />
| | | 5 |
| </td>
| | | 260.870 |
| <td style="text-align: center;"><br />
| | | 7/6, 15/13, 29/25 |
| </td>
| | | A2, d3 || Ex, Fbb |
| <td style="text-align: center;"><br />
| | | d2, A3 || Ebb, Fx |
| </td>
| | | 2# |
| </tr>
| | | |
| <tr>
| | |- |
| <td style="text-align: center;">525/512<br />
| | | 6 |
| </td>
| | | 313.043 |
| <td style="text-align: left;">| -9 1 2 1 &gt;<br />
| | | 6/5 |
| </td>
| | | m3 || Fb |
| <td style="text-align: right;">43.41<br />
| | | M3 || F# |
| </td>
| | | 3 |
| <td style="text-align: center;">Avicennma<br />
| | | Much better [[6/5]] than 12-edo |
| </td>
| | |- |
| <td style="text-align: center;">Avicenna's Enharmonic Diesis<br />
| | | 7 |
| </td>
| | | 365.217 |
| <td style="text-align: center;"><br />
| | | 16/13, 21/17, 26/21 |
| </td>
| | | M3 || F |
| </tr>
| | | m3 || F |
| <tr>
| | | 4b |
| <td style="text-align: center;">4000/3969<br />
| | | |
| </td>
| | |- |
| <td style="text-align: left;">| 5 -4 3 -2 &gt;<br />
| | | 8 |
| </td>
| | | 417.391 |
| <td style="text-align: right;">13.47<br />
| | | 14/11, 33/26 |
| </td>
| | | A3 || F# |
| <td style="text-align: center;">Octagar<br />
| | | d3 || Fb |
| </td>
| | | 3# |
| <td style="text-align: center;"><br />
| | | Practically just [[14/11]] |
| </td>
| | |- |
| <td style="text-align: center;"><br />
| | | 9 |
| </td>
| | | 469.565 |
| </tr>
| | | 21/16, 17/13 |
| <tr>
| | | d4 || Gb |
| <td style="text-align: center;">6144/6125<br />
| | | A4 || G# |
| </td>
| | | 4 |
| <td style="text-align: left;">| 11 1 -3 -2 &gt;<br />
| | | |
| </td>
| | |- |
| <td style="text-align: right;">5.36<br />
| | | 10 |
| </td>
| | | 521.739 |
| <td style="text-align: center;">Porwell<br />
| | | 23/17, 88/65, 256/189 |
| </td>
| | | P4 || G |
| <td style="text-align: center;"><br />
| | | P4 || G |
| </td>
| | | 5 |
| <td style="text-align: center;"><br />
| | | |
| </td>
| | |- |
| </tr>
| | | 11 |
| <tr>
| | | 573.913 |
| <td style="text-align: center;">100/99<br />
| | | 7/5, 32/23, 46/33 |
| </td>
| | | A4 || G# |
| <td style="text-align: left;">| 2 -2 2 0 -1 &gt;<br />
| | | d4 || Gb |
| </td>
| | | 6b |
| <td style="text-align: right;">17.40<br />
| | | |
| </td>
| | |- |
| <td style="text-align: center;">Ptolemisma<br />
| | | 12 |
| </td>
| | | 626.087 |
| <td style="text-align: center;"><br />
| | | 10/7, 23/16, 33/23 |
| </td>
| | | d5 || Ab |
| <td style="text-align: center;"><br />
| | | A5 || A# |
| </td>
| | | 5# |
| </tr>
| | | |
| <tr>
| | |- |
| <td style="text-align: center;">441/440<br />
| | | 13 |
| </td>
| | | 678.261 |
| <td style="text-align: left;">| -3 2 -1 2 -1 &gt;<br />
| | | 34/23, 65/44, 189/128 |
| </td>
| | | P5 || A |
| <td style="text-align: right;">3.93<br />
| | | P5 || A |
| </td>
| | | 6 |
| <td style="text-align: center;">Werckisma<br />
| | | Great Hornbostel generator |
| </td>
| | |- |
| <td style="text-align: center;"><br />
| | | 14 |
| </td>
| | | 730.435 |
| <td style="text-align: center;"><br />
| | | 32/21, 26/17 |
| </td>
| | | A5 || A# |
| </tr>
| | | d5 || Ab |
| </table>
| | | 7b |
| | | |
| | |- |
| | | 15 |
| | | 782.609 |
| | | 11/7, 52/33 |
| | | d6 || Bb |
| | | A6 || B# |
| | | 6# |
| | | Practically just [[11/7]] |
| | |- |
| | | 16 |
| | | 834.783 |
| | | 13/8, 34/21, 21/13 |
| | | m6 || B |
| | | M6 || B |
| | | 7 |
| | | |
| | |- |
| | | 17 |
| | | 886.957 |
| | | 5/3 |
| | | M6 || B# |
| | | m6 || Bb |
| | | 8b |
| | | Much better [[5/3]] than 12-edo |
| | |- |
| | | 18 |
| | | 939.130 |
| | | 12/7, 26/15, 50/29 |
| | | A6, d7 || Bx, Cbb |
| | | d6, A7 || Bbb, Cx |
| | | 7# |
| | | |
| | |- |
| | | 19 |
| | | 991.304 |
| | | 16/9, 39/22 |
| | | m7 || Cb |
| | | M7 || C# |
| | | 8 |
| | | |
| | |- |
| | | 20 |
| | | 1043.478 |
| | | 11/6, 20/11, 64/35 |
| | | M7 || C |
| | | m7 || C |
| | | 9b |
| | | |
| | |- |
| | | 21 |
| | | 1095.652 |
| | | 15/8, 17/9, 32/17 |
| | | A7 || C# |
| | | d7 || Cb |
| | | 8# |
| | | Less than 1 cent off [[32/17]] |
| | |- |
| | | 22 |
| | | 1147.826 |
| | | 33/17, 64/33 |
| | | d8 || Db |
| | | A8 || D# |
| | | 9 |
| | | |
| | |- |
| | | 23 |
| | | 1200.000 |
| | | 2/1 |
| | | P8 || D |
| | | P8 || D |
| | | 1 |
| | | |
| | |} |
|
| |
|
| <br />
| | <references/> |
| <!-- ws:start:WikiTextHeadingRule:8:&lt;h3&gt; --><h3 id="toc4"><a name="x23 tone equal temperament-Commas-INSTRUMENTS"></a><!-- ws:end:WikiTextHeadingRule:8 -->INSTRUMENTS</h3>
| | |
| <!-- ws:start:WikiTextLocalImageRule:293:&lt;img src=&quot;/file/view/Icositriphonic_Bass.JPG/206711470/594x216/Icositriphonic_Bass.JPG&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 216px; width: 594px;&quot; /&gt; --><img src="/file/view/Icositriphonic_Bass.JPG/206711470/594x216/Icositriphonic_Bass.JPG" alt="Icositriphonic_Bass.JPG" title="Icositriphonic_Bass.JPG" style="height: 216px; width: 594px;" /><!-- ws:end:WikiTextLocalImageRule:293 --><br />
| | |
| <em>An Icositriphonic Bass. 23-EDO Bass by Tútim Deft Wafil.</em><br />
| | [[File:Ciclo_Icositrifonía.png|alt=Ciclo Icositrifonía.png|491x490px|link=Harmony_of_23edo]] |
| <br />
| | |
| <!-- ws:start:WikiTextLocalImageRule:294:&lt;img src=&quot;/file/view/Icositriphonic_Guitar.PNG/206712964/601x305/Icositriphonic_Guitar.PNG&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 305px; width: 601px;&quot; /&gt; --><img src="/file/view/Icositriphonic_Guitar.PNG/206712964/601x305/Icositriphonic_Guitar.PNG" alt="Icositriphonic_Guitar.PNG" title="Icositriphonic_Guitar.PNG" style="height: 305px; width: 601px;" /><!-- ws:end:WikiTextLocalImageRule:294 --><br />
| | == Approximation to irrational intervals == |
| <em>An Icositriphonic 8-string Guitar. 23-EDO Guitar by Ron Sword.</em><br />
| | 23edo has good approximations of [[acoustic phi]] on 16\23, and [[pi]] on 38\23. Not until [[72edo|72]] do we find a better edo in terms of absolute error, and not until [[749edo|749]] do we find one in terms of relative error. |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="x23 tone equal temperament-23 tone Equal Modes:"></a><!-- ws:end:WikiTextHeadingRule:10 --><strong>23 tone <a class="wiki_link" href="/Equal%20Modes">Equal Modes</a>:</strong></h2>
| | {| class="wikitable center-all" |
| 10 10 3<br />
| | |+Direct approximation |
| 9 9 5<br /> | | |- |
| 8 8 7<br /> | | ! Interval |
| 7 7 7 2<br /> | | ! Error (abs, [[Cent|¢]]) |
| 7 2 7 7<br />
| | |- |
| 6 6 6 5<br /> | | | π |
| 6 5 6 6<br />
| | | 0.813 |
| 5 4 5 5 4<br />
| | |- |
| 5 4 5 4 5<br /> | | | π/ϕ |
| 7 1 7 7 1<br /> | | | 0.879 |
| 7 1 7 1 7<br /> | | |- |
| 5 5 5 5 3<br /> | | | ϕ |
| 5 3 5 5 5<br />
| | | 1.692 |
| 4 4 4 4 4 3<br /> | | |} |
| 4 3 4 4 4 4<br />
| | |
| 5 1 5 1 5 1 5<br /> | | == Regular temperament properties == |
| 3 3 3 5 3 3 3<br /> | | === Uniform maps === |
| 4 3 3 3 3 3 4<br /> | | {{Uniform map|edo=23}} |
| 3 4 3 3 4 3 3<br /> | | |
| 3 3 4 3 3 3 4<br /> | | === Commas === |
| 3 3 3 4 3 3 4<br />
| | 23et [[tempering out|tempers out]] the following [[comma]]s. This assumes the [[val]] {{val| 23 36 53 65 80 85 }}. Also note the discussion above, where there are some commas mentioned that are not in the standard comma list (e.g., 28/27). |
| 3 3 3 4 3 4 3<br /> | | |
| 2 5 2 5 2 5 2<br />
| | {| class="commatable wikitable center-all left-3 right-4 left-6" |
| 4 1 4 4 1 4 4 1<br />
| | |- |
| 3 3 3 3 3 3 3 2<br /> | | ! [[Harmonic limit|Prime<br>limit]] |
| 3 2 3 3 3 3 3 3<br /> | | ! [[Ratio]] |
| <strong>3 3 3 1 3 3 3 3 1</strong><br />
| | ! [[Monzo]] |
| 3 3 1 3 3 3 1 3 3<br /> | | ! [[Cents]] |
| 3 2 3 2 3 2 3 2 3<br />
| | ! [[Color name]] |
| 2 2 3 2 2 3 2 2 2 3<br /> | | ! Name(s) |
| <strong>3 1 3 1 3 1 3 1 3 1 3</strong><br />
| | |- |
| 2 2 2 1 2 2 2 1 2 2 2 2 1<br />
| | | 5 |
| 2 2 1 2 2 1 2 2 1 2 2 1 2 1<br />
| | | [[135/128]] |
| <strong>2 1 2 2 1 2 2 1 2 2 1 2 2 1</strong><br />
| | | {{monzo| -7 3 1 }} |
| 1 1 1 4 1 1 1 1 4 1 1 1 1 4<br /> | | | 92.18 |
| 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2<br />
| | | Layobi |
| <strong>2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1</strong><br />
| | | Mavila comma, major chroma |
| 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1<br /> | | |- |
| <br />
| | | 5 |
| <!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc6"><a name="Compositions"></a><!-- ws:end:WikiTextHeadingRule:12 -->Compositions</h1>
| | | [[15625/15552]] |
| <a class="wiki_link_ext" href="http://home.vicnet.net.au/%7Eepoetry/family.mp3" rel="nofollow">The Family Supper</a> by Warren Burt<br />
| | | {{monzo| -6 -5 6 }} |
| <u>Allegro Moderato</u> by Easley Blackwood<br />
| | | 8.11 |
| <a class="wiki_link_ext" href="http://www.youtube.com/watch?v=Hqst8MaRiYM" rel="nofollow">Icositriphonic Heptatonic MOS</a> by Igliashon Jones<br />
| | | Tribiyo |
| <a class="wiki_link_ext" href="http://soundclick.com/share?songid=5683734" rel="nofollow">A Walk Through the Valley of Ashes</a> by Iglashion Jones<br />
| | | Kleisma, semicomma majeur |
| <a class="wiki_link_ext" href="http://www.nonoctave.com/tunes/CosmicChamber.mp3" rel="nofollow">Cosmic Chamber</a> by X. J. Scott<br />
| | |- |
| <a class="wiki_link_ext" href="http://www.nonoctave.com/tunes/Daisies.mp3" rel="nofollow">Daisies on the Beach</a> by X. J. Scott<br />
| | | 7 |
| <span style="background-attachment: initial; background-clip: initial; background-color: initial; background-origin: initial; background-position: 100% 50%; background-repeat: no-repeat no-repeat; cursor: pointer; padding-right: 10px;"><a class="wiki_link_ext" href="http://www.akjmusic.com/audio/boogie_pie.mp3" rel="nofollow">Boogie Pie</a></span>by Aaron Krister Johnson<br />
| | | [[36/35]] |
| <br />
| | | {{monzo| 2 2 -1 -1 }} |
| <!-- ws:start:WikiTextHeadingRule:14:&lt;h1&gt; --><h1 id="toc7"><a name="Books"></a><!-- ws:end:WikiTextHeadingRule:14 -->Books</h1>
| | | 48.77 |
| <!-- ws:start:WikiTextLocalImageRule:295:&lt;img src=&quot;/file/view/Libro_Icositrif%C3%B3nico.PNG/163031733/242x294/Libro_Icositrif%C3%B3nico.PNG&quot; alt=&quot;&quot; title=&quot;&quot; style=&quot;height: 294px; width: 242px;&quot; /&gt; --><img src="/file/view/Libro_Icositrif%C3%B3nico.PNG/163031733/242x294/Libro_Icositrif%C3%B3nico.PNG" alt="Libro_Icositrifónico.PNG" title="Libro_Icositrifónico.PNG" style="height: 294px; width: 242px;" /><!-- ws:end:WikiTextLocalImageRule:295 --><br />
| | | Rugu |
| <br />
| | | Mint comma, septimal quartertone |
| <!-- ws:start:WikiTextHeadingRule:16:&lt;h1&gt; --><h1 id="toc8"><a name="Keyboards"></a><!-- ws:end:WikiTextHeadingRule:16 -->Keyboards</h1>
| | |- |
| <br />
| | | 7 |
| <!-- ws:start:WikiTextLocalImageRule:296:&lt;img src=&quot;/file/view/Teclado_Icositrif%C3%B3nico.PNG/258408436/567x297/Teclado_Icositrif%C3%B3nico.PNG&quot; alt=&quot;A classic visualization of an Alternative 1/3-tone Keyboard. Armodue-Hornbostel Family Musical Systems&quot; title=&quot;A classic visualization of an Alternative 1/3-tone Keyboard. Armodue-Hornbostel Family Musical Systems&quot; style=&quot;height: 297px; width: 567px;&quot; /&gt; --><table class="captionBox"><tr><td class="captionedImage"><img src="/file/view/Teclado_Icositrif%C3%B3nico.PNG/258408436/567x297/Teclado_Icositrif%C3%B3nico.PNG" alt="Teclado_Icositrifónico.PNG" title="Teclado_Icositrifónico.PNG" style="height: 297px; width: 567px;" /></td></tr><tr><td class="imageCaption">A classic visualization of an Alternative 1/3-tone Keyboard. Armodue-Hornbostel Family Musical Systems</td></tr></table><!-- ws:end:WikiTextLocalImageRule:296 --></body></html></pre></div>
| | | [[525/512]] |
| | | {{monzo| -9 1 2 1 }} |
| | | 43.41 |
| | | Lazoyoyo |
| | | Avicennma, Avicenna's enharmonic diesis |
| | |- |
| | | 7 |
| | | [[4000/3969]] |
| | | {{monzo| 5 -4 3 -2 }} |
| | | 13.47 |
| | | Rurutriyo |
| | | Octagar comma |
| | |- |
| | | 7 |
| | | [[6144/6125]] |
| | | {{monzo| 11 1 -3 -2 }} |
| | | 5.36 |
| | | Sarurutrigu |
| | | Porwell comma |
| | |- |
| | | 11 |
| | | [[100/99]] |
| | | {{monzo| 2 -2 2 0 -1 }} |
| | | 17.40 |
| | | Luyoyo |
| | | Ptolemisma |
| | |- |
| | | 11 |
| | | [[441/440]] |
| | | {{monzo| -3 2 -1 2 -1 }} |
| | | 3.93 |
| | | Luzozogu |
| | | Werckisma |
| | |} |
| | |
| | == Scales == |
| | |
| | Important [[mos]]ses include: |
| | |
| | * Mavila 2L5s 4334333 (13\23, 1\1) |
| | * Mavila 7L2s 133313333 (13\23, 1\1) |
| | * Sephiroth 3L4s 2525252 (7\23, 1\1) |
| | * [[Semiquartal]] 5L4s 332323232 (5\23, 1\1) |
| | |
| | The chart below shows some of the mos modes of [[mavila]] available in 23edo, mainly Pentatonic (5-note), antidiatonic (7-note), 9- and 16-note mosses. Here the outer ring represents individual step of 23edo itself, while the rings moving inward represent 16, 9, 7 and 5 note mosses: |
| | |
| | [[File:23edoMavilaMOS.jpg|alt=23edoMavilaMOS.jpg|23edoMavilaMOS.jpg]] |
| | |
| | === 23-tone mos scales === |
| | |
| | {| class="wikitable" |
| | ! [[MOS scale]] |
| | ! Name |
| | |- |
| | | 10 10 3 |
| | | |
| | |- |
| | | 9 9 5 |
| | | |
| | |- |
| | | 8 8 7 |
| | | |
| | |- |
| | | 7 7 7 2 |
| | | |
| | |- |
| | | 6 6 6 5 |
| | | |
| | |- |
| | | 5 4 5 5 4 |
| | | [[3L 2s|3L 2s (oneiro-pentatonic)]] |
| | |- |
| | | 5 4 5 4 5 |
| | | |
| | |- |
| | | 7 1 7 7 1 |
| | | |
| | |- |
| | | 7 1 7 1 7 |
| | | |
| | |- |
| | | 5 5 5 5 3 |
| | | [[4L 1s|4L 1s (bug pentatonic)]] |
| | |- |
| | | 4 4 4 4 4 3 |
| | | [[5L 1s|5L 1s (machinoid)]] |
| | |- |
| | | 5 1 5 1 5 1 5 |
| | | [[4L 3s|4L 3s (smitonic)]] |
| | |- |
| | | 3 3 3 5 3 3 3 |
| | | [[1L 6s|1L 6s (antiarcheotonic)]] |
| | |- |
| | | 4 3 3 3 3 3 4 |
| | | |
| | |- |
| | | 3 3 4 3 3 3 4 |
| | | [[2L 5s|2L 5s (mavila, anti-diatonic)]] |
| | |- |
| | | 4 3 3 3 3 4 3 |
| | | |
| | |- |
| | | 2 5 2 5 2 5 2 |
| | | [[3L 4s|3L 4s (mosh)]] |
| | |- |
| | | 4 1 4 4 1 4 4 1 |
| | | [[5L 3s|5L 3s (oneirotonic)]] |
| | |- |
| | | 3 3 3 3 3 3 3 2 |
| | | [[7L 1s|7L 1s (porcupoid)]] |
| | |- |
| | | 3 3 3 1 3 3 3 3 1 |
| | |[[7L 2s|7L 2s (mavila superdiatonic)]] |
| | |- |
| | | 3 2 3 2 3 2 3 2 3 |
| | | [[5L 4s|5L 4s (bug semiquartal)]] |
| | |- |
| | | 3 2 2 3 2 2 3 2 2 2 |
| | | [[3L 7s|3L 7s (sephiroid)]] |
| | |- |
| | | 4 1 1 4 1 1 4 1 1 4 1 |
| | | [[4L 7s|4L 7s (kleistonic)]] |
| | |- |
| | | 3 1 3 1 3 1 3 1 3 1 3 |
| | | Palestine 11 |
| | |- |
| | | 3 1 1 3 1 3 1 1 3 1 3 1 1 |
| | | [[5L 8s|5L 8s (ateamtonic)]] |
| | |- |
| | | 2 2 2 2 1 2 2 2 1 2 2 2 1 |
| | | [[10L 3s|10L 3s (luachoid)]] |
| | |- |
| | | 2 2 1 2 2 1 2 2 1 2 2 1 2 1 |
| | | [[9L 5s]] (Brittle [[Titanium]]) |
| | |- |
| | | 2 1 2 2 1 2 2 1 2 2 1 2 2 1 |
| | | Palestine 14 |
| | |- |
| | | 1 1 1 4 1 1 1 1 4 1 1 1 1 4 |
| | | [[3L 11s]] |
| | |- |
| | | 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 |
| | | [[4L 11s|4L 11s (mynoid)]] |
| | |- |
| | | 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 |
| | | [[8L 7s]] |
| | |- |
| | | 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 1 |
| | | [[7L 9s|7L 9s (mavila chromatic)]] |
| | |- |
| | | 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 |
| | | Palestine 17 |
| | |- |
| | | 2 1 1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 1 |
| | | [[5L 13s]] |
| | |- |
| | | 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 |
| | | [[4L 15s]] |
| | |} |
| | |
| | While [[35edo]] is the largest edo without a nondegenerate [[5L 2s]] scale, it has both degenerate cases (the equalised 7edo and the collapsed 5edo). |
| | |
| | 23edo is the largest edo without any form of 5L 2s, including the degenerate cases. |
| | |
| | === Kosmorsky's Sephiroth modes === |
| | |
| | Kosmorsky has argued that the most significant modes of 23 edo are those of the 2 2 2 3 2 2 3 2 2 3 scale ([[3L 7s|3L 7s fair mosh]]); This is derived from extending the ~1/3 comma tempered 13th Harmonic, two of which add up to the 21st harmonic and three add up to the 17th harmonic almost perfectly. Interestingly, the chord 8:13:21:34 is a fragment of the fibonacci sequence. |
| | |
| | Notated in ascending (standard) form. I have named these 10 modes according to the Sephiroth as follows: |
| | |
| | 2 2 2 3 2 2 3 2 2 3 - Mode Keter |
| | |
| | 2 2 3 2 2 3 2 2 3 2 - Chesed |
| | |
| | 2 3 2 2 3 2 2 3 2 2 - Netzach |
| | |
| | 3 2 2 3 2 2 3 2 2 2 - Malkuth |
| | |
| | 2 2 3 2 2 3 2 2 2 3 - Binah |
| | |
| | 2 3 2 2 3 2 2 2 3 2 - Tiferet |
| | |
| | 3 2 2 3 2 2 2 3 2 2 - Yesod |
| | |
| | 2 2 3 2 2 2 3 2 2 3 - Chokmah |
| | |
| | 2 3 2 2 2 3 2 2 3 2 - Gevurah |
| | |
| | 3 2 2 2 3 2 2 3 2 2 - Hod |
| | |
| | === Miscellaneous === |
| | 5 5 1 2 5 5 - [[Antipental blues]] (approximated from [[Dwarf17marv]]) |
| | |
| | 7 2 4 6 4 - Arcade (approximated from [[32afdo]]) |
| | |
| | 6 4 1 2 2 6 2 - [[Blackened skies]] (approximated from [[Compton]] in [[72edo]]) |
| | |
| | 5 5 3 7 3 - Geode (approximated from [[6afdo]]) |
| | |
| | 5 4 2 2 4 2 4 - Lost phantom (approximated from [[Mavila]] in [[30edo]]) |
| | |
| | 6 4 2 1 5 1 4 - [[Lost spirit]] (approximated from [[Meantone]] in [[31edo]]) |
| | |
| | 5 2 6 6 4 - Mechanical (approximated from [[31afdo]]) |
| | |
| | 5 4 4 2 8 - Mushroom (approximated from [[30afdo]]) |
| | |
| | 6 4 3 7 3 - Nightdrive (approximated from [[Mavila]] in [[30edo]]) |
| | |
| | 6 4 1 2 6 4 - Pelagic (approximated from [[Mavila]] in [[30edo]]) |
| | |
| | 2 3 8 2 8 - Approximation of [[Pelog]] lima |
| | |
| | 4 3 6 6 4 - Springwater (approximated from [[8afdo]]) |
| | |
| | 2 5 2 4 6 4 - Starship (approximated from [[68ifdo]]) |
| | |
| | 2 4 6 1 10 - Tightrope (this is the original/default tuning) |
| | |
| | 6 7 4 2 4 - Underpass (approximated from [[10afdo]]) |
| | |
| | 2 5 6 6 4 - Volcanic (approximated from [[16afdo]]) |
| | |
| | == Instruments == |
| | |
| | [[File:Icositriphonic_Guitar.PNG|alt=Icositriphonic_Guitar.PNG|601x305px|Icositriphonic_Guitar.PNG]] |
| | |
| | ''23-EDD 8-string Guitar by Ron Sword.'' |
| | |
| | [[File:Bajo_23-EDD.jpg|alt=Bajo 23-EDD.jpg|800x250px|Bajo 23-EDD.jpg]] |
| | |
| | ''23-EDD Bass by Osmiorisbendi.'' |
| | |
| | [[File:Baritarra_23-EDD.jpg|alt=Baritarra 23-EDD.jpg|800x258px|Baritarra 23-EDD.jpg]] |
| | |
| | ''23-EDD Baritar by Osmiorisbendi.'' |
| | |
| | [[File:Icositritar_1.png|alt=Icositritar 1.png|640x271px|Icositritar 1.png]] |
| | |
| | ''23-EDD 5-string Acoustic Guitar by Tútim Dennsuul Wafiil (RIP).'' |
| | |
| | [[File:Teclado_Icositrifónico.PNG|alt=Teclado Icositrifónico.PNG|607x323px|Teclado Icositrifónico.PNG]] |
| | |
| | ''Illustrative 23-EDD Keyboard'' |
| | |
| | Chris Vaisvil made a do it yourself 23 edo electric guitar out of less than $50 of material. Here he is playing it. |
| | |
| | [[File:playing.jpg|alt=playing.jpg|playing.jpg]] |
| | |
| | Here is a still shot of the completed instrument. |
| | |
| | [[File:complette.jpg|alt=complette.jpg|complette.jpg]] |
| | |
| | This movie is a series of still shots Chris took during the process of making a 23 edo guitar in a stick like form. At the end the guitar is played without effects etc. and the open string tuning is sounded - which starts with a normal E and then adjusted to the 9th / 7th fret unison, like a typical 12edo guitar fashion. |
| | |
| | <youtube>K4iO7k152og</youtube> |
| | |
| | === Lumatone === |
| | See: [[Lumatone mapping for 23edo]] |
| | |
| | == Music == |
| | {{Main|23edo/Music}} |
| | {{Catrel|23edo tracks}} |
| | |
| | == Further reading == |
| | [[File:Libro_Icositrifónico.PNG|alt=Libro_Icositrifónico.PNG|302x365px|Libro_Icositrifónico.PNG|thumb|''Icosikaitriphonic Scales for Guitar'' cover art.]] |
| | * [[Sword, Ron]]. ''[http://www.metatonalmusic.com/books.html Icosikaitriphonic Scales for Guitar: A Repository of Theory, Reference Materials, and Scale Charts for Xentonal Families]''. 2010. |
| | |
| | [[Category:23-tone scales]] |
| | [[Category:Guitar]] |
| | [[Category:Mavila]] |
| | [[Category:Modes]] |
| | [[Category:Twentuning]] |