51edo: Difference between revisions
m Moving from Category:Edo to Category:Equal divisions of the octave using Cat-a-lot |
m →Scales |
||
(45 intermediate revisions by 17 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
[[ | {{ED intro}} | ||
[[ | |||
[[Category: | == Theory == | ||
Since {{nowrap|51 {{=}} 3 × 17}}, 51edo shares its [[3/2|fifth]] with [[17edo]]. Compared to other multiples of 17edo, notably [[34edo]] and [[68edo]], 51edo's harmonic inventory seems lacking, getting few harmonics very well considering its step size. However, it does possess excellent approximations of [[11/10]] and [[21/16]], only about 0.3 cents off in each case. | |||
Using the [[patent val]], 51et [[tempering out|tempers out]] [[250/243]] in the [[5-limit]], [[225/224]] and [[2401/2400]] in the [[7-limit]], and [[55/54]] and [[100/99]] in the [[11-limit]]. It is the [[optimal patent val]] for [[sonic]], the rank-3 temperament tempering out 55/54, 100/99, and 250/243, and also for the rank-4 temperament tempering out 55/54. It provides an alternative tuning to [[22edo]] for [[porcupine]], with a nice fifth but a rather flat major third, and the optimal patent val for the 7- and 11-limit [[porky]] temperament, which is sonic plus 225/224. 51 contains an archeotonic [[6L 1s]] scale based on repetitions of 8\51, creating a scale with a whole-tone-like drive towards the tonic through the 17edo semitone at the top. | |||
Alternatively, using the 51c val {{val| 51 81 '''119''' 143 }}, the [[5/4]] is mapped to 1\3 (400 cents), [[support]]ing [[augmented]]. In the 7-limit it tempers out [[245/243]] and supports [[hemiaug]] and [[rodan]]. The 51cd val {{val| 51 81 '''119''' '''144''' }} takes the same [[7/4]] from 17edo, and supports [[augene]]. | |||
51edo's step is the closest direct approximation to the [[Pythagorean comma]] by edo steps, though that comma itself is mapped to a different interval. | |||
=== Odd harmonics === | |||
{{Harmonics in equal|51}} | |||
=== Subsets and supersets === | |||
51edo contains [[3edo]] and [[17edo]] as subsets. | |||
One of the very powerful (but very complex) supersets of 51edo is [[612edo]], which divides each step of 51edo into 12 equal parts, for which the name "skisma" has been proposed. | |||
== Intervals == | |||
{| class="wikitable center-all right-2 left-3" | |||
|- | |||
! # | |||
! [[Cent]]s | |||
! colspan="3" | [[Ups and downs notation]] | |||
|- | |||
| 0 | |||
| 0.0 | |||
| Perfect 1sn | |||
| P1 | |||
| D | |||
|- | |||
| 1 | |||
| 23.5 | |||
| Up 1sn | |||
| ^1 | |||
| ^D | |||
|- | |||
| 2 | |||
| 47.1 | |||
| Downminor 2nd | |||
| vm2 | |||
| vEb | |||
|- | |||
| 3 | |||
| 70.6 | |||
| Minor 2nd | |||
| m2 | |||
| Eb | |||
|- | |||
| 4 | |||
| 94.1 | |||
| Upminor 2nd | |||
| ^m2 | |||
| ^Eb | |||
|- | |||
| 5 | |||
| 117.6 | |||
| Downmid 2nd | |||
| v~2 | |||
| ^^Eb | |||
|- | |||
| 6 | |||
| 141.2 | |||
| Mid 2nd | |||
| ~2 | |||
| vvvE, ^^^Eb | |||
|- | |||
| 7 | |||
| 164.7 | |||
| Upmid 2nd | |||
| ^~2 | |||
| vvE | |||
|- | |||
| 8 | |||
| 188.2 | |||
| Downmajor 2nd | |||
| vM2 | |||
| vE | |||
|- | |||
| 9 | |||
| 211.8 | |||
| Major 2nd | |||
| M2 | |||
| E | |||
|- | |||
| 10 | |||
| 235.3 | |||
| Upmajor 2nd | |||
| ^M2 | |||
| ^E | |||
|- | |||
| 11 | |||
| 258.8 | |||
| Downminor 3rd | |||
| vm3 | |||
| vF | |||
|- | |||
| 12 | |||
| 282.4 | |||
| Minor 3rd | |||
| m3 | |||
| F | |||
|- | |||
| 13 | |||
| 305.9 | |||
| Upminor 3rd | |||
| ^m3 | |||
| ^F | |||
|- | |||
| 14 | |||
| 329.4 | |||
| Downmid 3rd | |||
| v~3 | |||
| ^^F | |||
|- | |||
| 15 | |||
| 352.9 | |||
| Mid 3rd | |||
| ~3 | |||
| ^^^F, vvvF# | |||
|- | |||
| 16 | |||
| 376.5 | |||
| Upmid 3rd | |||
| ^~3 | |||
| vvF# | |||
|- | |||
| 17 | |||
| 400.0 | |||
| Downmajor 3rd | |||
| vM3 | |||
| vF# | |||
|- | |||
| 18 | |||
| 423.5 | |||
| Major 3rd | |||
| M3 | |||
| F# | |||
|- | |||
| 19 | |||
| 447.1 | |||
| Upmajor 3rd | |||
| ^M3 | |||
| ^F# | |||
|- | |||
| 20 | |||
| 470.6 | |||
| Down 4th | |||
| v4 | |||
| vG | |||
|- | |||
| 21 | |||
| 494.1 | |||
| Perfect 4th | |||
| P4 | |||
| G | |||
|- | |||
| 22 | |||
| 517.6 | |||
| Up 4th | |||
| ^4 | |||
| ^G | |||
|- | |||
| 23 | |||
| 541.2 | |||
| Downdim 5th | |||
| vd5 | |||
| vAb | |||
|- | |||
| 24 | |||
| 564.7 | |||
| Dim 5th | |||
| d5 | |||
| Ab | |||
|- | |||
| 25 | |||
| 588.2 | |||
| Updim 5th | |||
| ^d5 | |||
| ^Ab | |||
|- | |||
| 26 | |||
| 611.8 | |||
| Downaug 4th | |||
| vA4 | |||
| vG# | |||
|- | |||
| 27 | |||
| 635.3 | |||
| Aug 4th | |||
| A4 | |||
| G# | |||
|- | |||
| 28 | |||
| 658.8 | |||
| Upaug 4th | |||
| ^A4 | |||
| ^G# | |||
|- | |||
| 29 | |||
| 682.4 | |||
| Down 5th | |||
| v5 | |||
| vA | |||
|- | |||
| 30 | |||
| 705.9 | |||
| Perfect 5th | |||
| P5 | |||
| A | |||
|- | |||
| 31 | |||
| 729.4 | |||
| Up 5th | |||
| ^5 | |||
| ^A | |||
|- | |||
| 32 | |||
| 752.9 | |||
| Downminor 6th | |||
| vm6 | |||
| vBb | |||
|- | |||
| 33 | |||
| 776.5 | |||
| Minor 6th | |||
| m6 | |||
| Bb | |||
|- | |||
| 34 | |||
| 800.0 | |||
| Upminor 6th | |||
| ^m6 | |||
| ^Bb | |||
|- | |||
| 35 | |||
| 823.5 | |||
| Downmid 6th | |||
| v~6 | |||
| ^^Bb | |||
|- | |||
| 36 | |||
| 847.1 | |||
| Mid 6th | |||
| ~6 | |||
| vvvB, ^^^Bb | |||
|- | |||
| 37 | |||
| 870.6 | |||
| Upmid 6th | |||
| ^~6 | |||
| vvB | |||
|- | |||
| 38 | |||
| 894.1 | |||
| Downmajor 6th | |||
| vM6 | |||
| vB | |||
|- | |||
| 39 | |||
| 917.6 | |||
| Major 6th | |||
| M6 | |||
| B | |||
|- | |||
| 40 | |||
| 941.2 | |||
| Upmajor 6th | |||
| ^M6 | |||
| ^B | |||
|- | |||
| 41 | |||
| 964.7 | |||
| Downminor 7th | |||
| vm7 | |||
| vC | |||
|- | |||
| 42 | |||
| 988.2 | |||
| Minor 7th | |||
| m7 | |||
| C | |||
|- | |||
| 43 | |||
| 1011.8 | |||
| Upminor 7th | |||
| ^m7 | |||
| ^C | |||
|- | |||
| 44 | |||
| 1035.3 | |||
| Downmid 7th | |||
| v~7 | |||
| ^^C | |||
|- | |||
| 45 | |||
| 1058.8 | |||
| Mid 7th | |||
| ~7 | |||
| ^^^C, vvvC# | |||
|- | |||
| 46 | |||
| 1082.4 | |||
| Upmid 7th | |||
| ^~7 | |||
| vvC# | |||
|- | |||
| 47 | |||
| 1105.9 | |||
| Downmajor 7th | |||
| vM7 | |||
| vC# | |||
|- | |||
| 48 | |||
| 1129.4 | |||
| Major 7th | |||
| M7 | |||
| C# | |||
|- | |||
| 49 | |||
| 1152.9 | |||
| Upmajor 7th | |||
| ^M7 | |||
| ^C# | |||
|- | |||
| 50 | |||
| 1176.5 | |||
| Down 8ve | |||
| v8 | |||
| vD | |||
|- | |||
| 51 | |||
| 1200.0 | |||
| Perfect 8ve | |||
| P8 | |||
| D | |||
|} | |||
== Notation == | |||
=== Ups and downs notation === | |||
51edo can be notated with ups and downs, spoken as up, dup, trup, dudsharp, downsharp, sharp, upsharp etc. and down, dud, trud, dupflat etc. | |||
{{Sharpness-sharp6a}} | |||
Half-sharps and half-flats can be used to avoid triple arrows: | |||
{{Sharpness-sharp6b}} | |||
In 51edo, a combination of quarter tone accidentals and arrow accidentals from [[Helmholtz–Ellis notation]] can be used. | |||
{{Sharpness-sharp6}} | |||
If double arrows are not desirable, then arrows can be attached to quarter-tone accidentals: | |||
{{Sharpness-sharp6-qt}} | |||
=== Ivan Wyschnegradsky's notation === | |||
Since a sharp raises by six steps, Wyschnegradsky accidentals borrowed from [[72edo]] can also be used: | |||
{{Sharpness-sharp6-iw}} | |||
=== Sagittal notation === | |||
In the following diagrams, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's [[Sagittal notation#Primary comma|primary comma]] (the comma it ''exactly'' represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it ''approximately'' represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this edo. | |||
==== Evo flavor ==== | |||
<imagemap> | |||
File:51-EDO_Evo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 519 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[64/63]] | |||
rect 120 80 220 106 [[81/80]] | |||
rect 220 80 340 106 [[27/26]] | |||
</imagemap> | |||
==== Revo flavor ==== | |||
<imagemap> | |||
File:51-EDO_Revo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 511 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[64/63]] | |||
rect 120 80 220 106 [[81/80]] | |||
rect 220 80 340 106 [[27/26]] | |||
default [[File:51-EDO_Revo_Sagittal.svg]] | |||
</imagemap> | |||
==== Evo-SZ flavor ==== | |||
<imagemap> | |||
File:51-EDO_Evo-SZ_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 511 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[64/63]] | |||
rect 120 80 220 106 [[81/80]] | |||
rect 220 80 340 106 [[27/26]] | |||
default [[File:51-EDO_Evo-SZ_Sagittal.svg]] | |||
</imagemap> | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3.7 | |||
| 1029/1024, {{monzo| 17 -16 3 }} | |||
| {{Mapping| 51 81 143 }} | |||
| −0.339 | |||
| 1.63 | |||
| 6.92 | |||
|- style="border-top: double;" | |||
| 2.3.5 | |||
| 128/125, {{monzo| -13 17 -6 }} | |||
| {{Mapping| 51 81 119 }} (51c) | |||
| −2.789 | |||
| 2.41 | |||
| 10.3 | |||
|- style="border-top: double;" | |||
| 2.3.5 | |||
| 250/243, 34171875/33554432 | |||
| {{Mapping| 51 81 118 }} (51) | |||
| +0.581 | |||
| 2.77 | |||
| 11.8 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br>per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br>ratio* | |||
! Temperament | |||
|- | |||
| 1 | |||
| 5\51 | |||
| 117.6 | |||
| 15/14 | |||
| [[Miracle]] (51e, out of tune) / oracle (51) | |||
|- | |||
| 1 | |||
| 7\51 | |||
| 164.7 | |||
| 11/10 | |||
| [[Porky]] (51) | |||
|- | |||
| 1 | |||
| 10\51 | |||
| 235.3 | |||
| 8/7 | |||
| [[Rodan]] (51cf…, out of tune) / aerodino (51ce) | |||
|- | |||
| 1 | |||
| 5\51 | |||
| 541.2 | |||
| 15/11 | |||
| [[Necromanteion]] (51ce) | |||
|- | |||
| 3 | |||
| 19\51<br>(2\51) | |||
| 447.1<br>(47.1) | |||
| 9/7<br>(36/35) | |||
| [[Hemiaug]] (51ce) | |||
|- | |||
| 3 | |||
| 21\51<br>(4\51) | |||
| 494.1<br>(94.1) | |||
| 4/3<br>(16/15) | |||
| [[Augmented]] (51c) | |||
|} | |||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct | |||
== Scales == | |||
* [[Porky]][7] (Palace{{idio}}): 7 7 7 9 7 7 7 | |||
* UFO scale{{idio}} ([[inflected MOS]] of [[Batch 89 temperaments#Teefs|Teefs]][19]{{idio}}): 2 2 4 1 2 2 2 4 2 5 2 4 4 2 2 1 4 2 2 | |||
* Cosmic scale{{idio}} subset of UFO scale): 21 9 4 9 8 | |||
== Instruments == | |||
; Lumatone | |||
: See [[Lumatone mapping for 51edo]]. | |||
== Music == | |||
; [[Bryan Deister]] | |||
* [https://www.youtube.com/shorts/5pM8OC0fV98 ''51edo improv''] (2025) | |||
; [[Frédéric Gagné]] | |||
* ''Whalectric'' (2022) – [https://youtu.be/_E6qvbJWYY8 YouTube] | [https://musescore.com/fredg999/whalectric score] – 7:4 [[semiquartal]] 4|4 mode | |||
; [[James Mulvale]] (FASTFAST) | |||
* [https://youtu.be/8GojBZSyqDw ''STARS (Thoughts and Prayers)''] (2020) | |||
; [[Ray Perlner]] | |||
* [https://www.youtube.com/watch?v=peidZ1jEafQ ''Fugue''] (2023) – for organ in 51edo Porcupine[7] ssssssL "Pandian" | |||
[[Category:Listen]] |