Tags: Mobile edit Mobile web edit |
|
(24 intermediate revisions by 6 users not shown) |
Line 1: |
Line 1: |
| '''[[Ed5|Division of the 5th harmonic]] into 28 equal parts''' (28ed5) is related to [[12edo|12 edo]], but with the 5/1 rather than the 2/1 being just. The octave is about 5.8656 cents compressed and the step size is about 99.5112 cents. This tuning has a meantone fifth as the number of divisions of the 5th harmonic is multiple of 4. This tuning also has the perfect fourth which is more accurate for 4/3 than that of 12edo, as well as 18/17, 19/16, and 24/17.
| | {{Infobox ET}} |
| | {{ED intro}} |
|
| |
|
| {| class="wikitable" | | == Theory == |
| | 28ed5 is related to [[12edo]], but with the 5/1 rather than the 2/1 being just. This compresses the octave by 5.8656{{c}}, a small but significant deviation. This tuning has a meantone fifth as the number of divisions of the 5th harmonic is multiple of 4. This tuning also has the perfect fourth which is more accurate for 4/3 than that of 12edo, as well as 18/17, 19/16, and 24/17. |
| | |
| | === Harmonics === |
| | {{Harmonics in equal|28|5|1}} |
| | {{Harmonics in equal|28|5|1|start=12|columns=12|collapsed=true|title=Approximation of harmonics in 28ed5 (continued)}} |
| | |
| | === Subsets and supersets === |
| | Since 28 factors into 2<sup>2</sup> × 7, 28ed5 has subset ed5's {{EDs|equave=5| 2, 4, 7, and 14 }}. |
| | |
| | == Intervals == |
| | {| class="wikitable center-1 right-2" |
| |- | | |- |
| ! | degree | | ! # |
| ! | cents value | | ! Cents |
| ! | corresponding <br>JI intervals | | ! Approximate ratios |
| ! | comments
| |
| |- | | |- |
| | | 0
| | | 0 |
| | | 0.0000
| | | 0.0 |
| | | '''exact [[1/1]]''' | | | [[1/1]] |
| | |
| |
| |- | | |- |
| | | 1
| | | 1 |
| | | 99.5112
| | | 99.5 |
| | | [[18/17]]
| | | [[18/17]] |
| | |
| |
| |- | | |- |
| | | 2
| | | 2 |
| | | 199.0224
| | | 199.0 |
| | | [[55/49]]
| | | [[9/8]] |
| | |
| |
| |- | | |- |
| | | 3
| | | 3 |
| | | 298.5336
| | | 298.5 |
| | | [[19/16]]
| | | [[6/5]] |
| | |
| |
| |- | | |- |
| | | 4
| | | 4 |
| | | 398.0448
| | | 398.0 |
| | | 34/27
| | | [[5/4]] |
| | | pseudo-[[5/4]] | |
| |- | | |- |
| | | 5
| | | 5 |
| | | 497.5560
| | | 497.6 |
| | | [[4/3]]
| | | [[4/3]] |
| | |
| |
| |- | | |- |
| | | 6
| | | 6 |
| | | 597.0672
| | | 597.1 |
| | | [[24/17]]
| | | [[7/5]] |
| | |
| |
| |- | | |- |
| | | 7
| | | 7 |
| | | 696.5784
| | | 696.6 |
| | |
| | | [[3/2]] |
| | | meantone fifth <br>(pseudo-[[3/2]]) | |
| |- | | |- |
| | | 8
| | | 8 |
| | | 796.0896
| | | 796.1 |
| | | [[19/12]]
| | | [[8/5]] |
| | |
| |
| |- | | |- |
| | | 9
| | | 9 |
| | | 895.6008
| | | 895.6 |
| | | 57/34
| | | [[5/3]] |
| | | pseudo-[[5/3]] | |
| |- | | |- |
| | | 10
| | | 10 |
| | | 995.1120
| | | 995.1 |
| | | [[16/9]]
| | | [[7/4]] |
| | |
| |
| |- | | |- |
| | | 11
| | | 11 |
| | | 1094.6232
| | | 1094.6 |
| | | [[32/17]]
| | | [[15/8]] |
| | |
| |
| |- | | |- |
| | | 12
| | | 12 |
| | | 1194.1344
| | | 1194.1 |
| | | 255/128
| | | [[2/1]] |
| | | pseudo-[[octave]] | |
| |- | | |- |
| | | 13
| | | 13 |
| | | 1293.6457
| | | 1293.6 |
| | | [[19/18|19/9]]
| | | [[17/8]] |
| | |
| |
| |- | | |- |
| | | 14
| | | 14 |
| | | 1393.1569
| | | 1393.2 |
| | | [[19/17|38/17]], 85/38
| | | [[9/4]] |
| | | meantone major second plus an octave
| |
| |- | | |- |
| | | 15
| | | 15 |
| | | 1492.6681
| | | 1492.7 |
| | | 45/19 | | | [[12/5]] |
| | |
| |
| |- | | |- |
| | | 16
| | | 16 |
| | | 1592.1793
| | | 1592.2 |
| | | 128/51
| | | [[5/2]] |
| | | pseudo-[[5/2]] | |
| |- | | |- |
| | | 17
| | | 17 |
| | | 1691.6905
| | | 1691.7 |
| | | 85/32 | | | [[8/3]] |
| | |
| |
| |- | | |- |
| | | 18
| | | 18 |
| | | 1791.2017
| | | 1791.2 |
| | | [[45/32|45/16]]
| | | [[14/5]] |
| | |
| |
| |- | | |- |
| | | 19
| | | 19 |
| | | 1890.7129
| | | 1890.7 |
| | | 170/57
| | | [[3/1]] |
| | | pseudo-[[3/1]] | |
| |- | | |- |
| | | 20
| | | 20 |
| | | 1990.2241
| | | 1990.2 |
| | | [[30/19|60/19]]
| | | [[16/5]] |
| | |
| |
| |- | | |- |
| | | 21
| | | 21 |
| | | 2089.7353
| | | 2089.7 |
| | |
| | | [[10/3]] |
| | | meantone major sixth plus an octave <br>(pseudo-[[10/3]]) | |
| |- | | |- |
| | | 22
| | | 22 |
| | | 2189.2465
| | | 2189.2 |
| | | 85/24 | | | [[7/2]] |
| | |
| |
| |- | | |- |
| | | 23
| | | 23 |
| | | 2288.7577
| | | 2288.8 |
| | | [[15/4]]
| | | [[15/4]] |
| | |
| |
| |- | | |- |
| | | 24
| | | 24 |
| | | 2388.2689
| | | 2388.3 |
| | | 135/34
| | | [[4/1]] |
| | | pseudo-[[4/1]] | |
| |- | | |- |
| | | 25
| | | 25 |
| | | 2487.7801
| | | 2487.8 |
| | | [[20/19|80/19]]
| | | [[17/4]] |
| | |
| |
| |- | | |- |
| | | 26
| | | 26 |
| | | 2587.2913
| | | 2587.3 |
| | | [[49/44|49/11]]
| | | [[9/2]] |
| | |
| |
| |- | | |- |
| | | 27
| | | 27 |
| | | 2686.8025
| | | 2686.8 |
| | | 85/18 | | | [[19/4]] |
| | |
| |
| |- | | |- |
| | | 28
| | | 28 |
| | | 2786.3137
| | | 2786.3 |
| | | '''exact [[5/1]]''' | | | [[5/1]] |
| | | just major third plus two octaves
| |
| |} | | |} |
|
| |
|
| ==28ed5 as a generator== | | == Regular temperaments == |
| 28ed5 can also be thought of as a [[generator]] of the 2.3.5.17.19 [[Subgroup temperaments|subgroup temperament]] which tempers out 1216/1215, 1445/1444, and 6144/6137, which is a [[cluster temperament]] with 12 clusters of notes in an octave. The small chroma interval between adjacent notes in each cluster is very versatile, representing 1088/1083 ~ 256/255 ~ 289/288 ~ 324/323 ~ 361/360 all tempered together. This temperament is supported by [[12edo]], [[205edo]], and [[217edo]] among others.
| | {{Main| Quindromeda family }} |
| | |
| '''<font style="font-size: 1.25em">5-limit 12&193 (quinsa-quingu)</font>'''
| |
| | |
| Comma: |56 -28 -5>
| |
| | |
| POTE generator: ~4428675/4194304 = 99.526
| |
| | |
| Map: [<1 2 0|, <0 -5 28|]
| |
| | |
| EDOs: 12, 169, 181, 193, 205, 217, 229, 241, 374, 398, 422, 446, 591, 603, 627, 639, 784, 808, 832, 856, 989, 1001, 1013, 1037, 1049, 1061, 1242
| |
| | |
| Badness: 0.399849<br>
| |
| | |
| '''<font style="font-size: 1.25em">7-limit 12&193</font>'''
| |
| | |
| Commas: 5120/5103, 9765625/9680832
| |
| | |
| POTE generator: ~625/588 = 99.483
| |
| | |
| Map: [<1 2 0 -2|, <0 -5 28 58|]
| |
| | |
| EDOs: 12, 169, 181, 193, 205, 374
| |
| | |
| Badness: 0.155536<br>
| |
| | |
| '''<font style="font-size: 1.15em">11-limit 12&193</font>'''
| |
| | |
| Commas: 1375/1372, 4375/4356, 5120/5103
| |
| | |
| POTE generator: ~35/33 = 99.472
| |
| | |
| Map: [<1 2 0 -2 -4|, <0 -5 28 58 90|]
| |
| | |
| EDOs: 12, 169e, 181, 193, 205e, 374
| |
| | |
| Badness: 0.073158<br>
| |
| | |
| '''<font style="font-size: 1.15em">13-limit 12&193</font>'''
| |
| | |
| Commas: 325/324, 1375/1372, 1575/1573, 4096/4095
| |
| | |
| POTE generator: ~35/33 = 99.468
| |
| | |
| Map: [<1 2 0 -2 -4 10|, <0 -5 28 58 90 -76|]
| |
| | |
| EDOs: 12, 181, 193, 374
| |
| | |
| Badness: 0.062737<br>
| |
| | |
| '''<font style="font-size: 1.15em">17-limit 12&193</font>'''
| |
| | |
| Commas: 325/324, 375/374, 595/594, 1275/1274, 4096/4095
| |
| | |
| POTE generator: ~18/17 = 99.469
| |
| | |
| Map: [<1 2 0 -2 -4 10 5|, <0 -5 28 58 90 -76 -11|]
| |
| | |
| EDOs: 12, 181, 193, 374
| |
| | |
| Badness: 0.037855<br>
| |
| | |
| '''<font style="font-size: 1.15em">19-limit 12&193</font>'''
| |
| | |
| Commas: 325/324, 375/374, 400/399, 595/594, 1216/1215, 1275/1274
| |
| | |
| POTE generator: ~18/17 = 99.469
| |
| | |
| Map: [<1 2 0 -2 -4 10 5 4|, <0 -5 28 58 90 -76 -11 3|]
| |
| | |
| EDOs: 12, 181, 193, 374
| |
| | |
| Badness: 0.025861<br>
| |
| | |
| '''<font style="font-size: 1.25em">7-limit 12&229</font>'''
| |
| | |
| Commas: 3136/3125, 33554432/33480783
| |
| | |
| POTE generator: ~200/189 = 99.555
| |
| | |
| Map: [<1 2 0 -3|, <0 -5 28 70|]
| |
| | |
| EDOs: 12, 217, 229, 241, 446
| |
| | |
| Badness: 0.142897<br>
| |
| | |
| '''<font style="font-size: 1.15em">11-limit 12&229</font>'''
| |
| | |
| Commas: 3136/3125, 8019/8000, 15488/15435
| |
| | |
| POTE generator: ~200/189 = 99.570
| |
| | |
| Map: [<1 2 0 -3 -6|, <0 -5 28 70 114|]
| |
| | |
| EDOs: 12, 217e, 229, 241, 446e
| |
| | |
| Badness: 0.093971<br>
| |
| | |
| '''<font style="font-size: 1.15em">13-limit 12&229</font>'''
| |
| | |
| Commas: 1573/1568, 3136/3125, 4096/4095, 4459/4455
| |
| | |
| POTE generator: ~200/189 = 99.556
| |
| | |
| Map: [<1 2 0 -3 -6 11|, <0 -5 28 70 114 -88|]
| |
| | |
| EDOs: 12, 217e, 229, 241f, 446e
| |
| | |
| Badness: 0.100195<br>
| |
| | |
| '''<font style="font-size: 1.15em">17-limit 12&229</font>'''
| |
| | |
| Commas: 561/560, 715/714, 1701/1700, 3136/3125, 4096/4095
| |
| | |
| POTE generator: ~18/17 = 99.556
| |
| | |
| Map: [<1 2 0 -3 -6 11 5|, <0 -5 28 70 114 -88 -11|]
| |
| | |
| EDOs: 12, 217e, 229, 241f, 446e
| |
| | |
| Badness: 0.057851<br>
| |
| | |
| '''<font style="font-size: 1.15em">19-limit 12&229</font>'''
| |
| | |
| Commas: 286/285, 476/475, 561/560, 627/625, 1216/1215, 1729/1728
| |
| | |
| POTE generator: ~18/17 = 99.557
| |
| | |
| Map: [<1 2 0 -3 -6 11 5 4|, <0 -5 28 70 114 -88 -11 3|]
| |
| | |
| EDOs: 12, 217e, 229, 241f, 446e
| |
| | |
| Badness: 0.040410<br>
| |
| | |
| '''<font style="font-size: 1.25em">7-limit 12&422</font>'''
| |
| | |
| Commas: 102760448/102515625, 1220703125/1219784832
| |
| | |
| POTE generator: ~1323/1250 = 99.521
| |
| | |
| Map: [<2 4 0 -5|, <0 -5 28 64|]
| |
| | |
| EDOs: 12, 398, 410, 422, 808, 832, 1242
| |
| | |
| Badness: 0.233140<br>
| |
| | |
| '''<font style="font-size: 1.15em">11-limit 12&422</font>'''
| |
| | |
| Commas: 5632/5625, 9801/9800, 85937500/85766121
| |
| | |
| POTE generator: ~1323/1250 = 99.525
| |
| | |
| Map: [<2 4 0 -5 -10|, <0 -5 28 64 102|]
| |
| | |
| EDOs: 12, 410, 422, 832
| |
| | |
| Badness: 0.093926<br>
| |
| | |
| '''<font style="font-size: 1.15em">13-limit 12f&422</font>'''
| |
| | |
| Commas: 1716/1715, 2080/2079, 5632/5625, 831875/830466
| |
| | |
| POTE generator: ~1323/1250 = 99.523
| |
| | |
| Map: [<2 4 0 -5 -10 -13|, <0 -5 28 64 102 123|]
| |
| | |
| EDOs: 12f, 410, 422, 832
| |
| | |
| Badness: 0.053361<br>
| |
| | |
| '''<font style="font-size: 1.15em">17-limit 12f&422</font>'''
| |
| | |
| Commas: 1716/1715, 2080/2079, 2500/2499, 5632/5625, 15895/15876
| |
| | |
| POTE generator: ~18/17 = 99.522
| |
| | |
| Map: [<2 4 0 -5 -10 -13 10|, <0 -5 28 64 102 123 -11|]
| |
| | |
| EDOs: 12f, 410, 422, 832
| |
| | |
| Badness: 0.034659<br>
| |
| | |
| '''<font style="font-size: 1.15em">19-limit 12f&422</font>'''
| |
| | |
| Commas: 1216/1215, 1445/1444, 1716/1715, 2080/2079, 2376/2375, 2500/2499
| |
| | |
| POTE generator: ~18/17 = 99.523
| |
| | |
| Map: [<2 4 0 -5 -10 -13 10 8|, <0 -5 28 64 102 123 -11 3|]
| |
| | |
| EDOs: 12f, 410, 422, 832h
| |
| | |
| Badness: 0.025439<br>
| |
| | |
| '''<font style="font-size: 1.25em">2.3.5.17.19 subgroup 12&193</font>'''
| |
| | |
| Commas: 1216/1215, 1445/1444, 6144/6137
| |
|
| |
|
| POTE generator: ~18/17 = 99.524
| | 28ed5 can also be thought of as a [[generator]] of the 2.3.5.17.19 [[subgroup temperament]] which tempers out 1216/1215, 1445/1444, and 6144/6137, which is a [[cluster temperament]] with 12 clusters of notes in an octave (quindromeda temperament). This temperament is supported by {{EDOs| 12-, 169-, 181-, 193-, 205-, 217-, 229-, and 241edo }}. |
|
| |
|
| Map: [<1 2 0 5 4|, <0 -5 28 -11 3|]
| | Equating 225/224 with 256/255 leads to [[quintakwai]] (12 & 193), which tempers out 400/399 (also equating 20/19 and 21/20) in the 2.3.5.7.17.19 subgroup, and 361/360 with 400/399 leads to [[quintagar]] (12 & 217), which tempers out 476/475 (also equating 19/17 with 28/25) in the 2.3.5.7.17.19 subgroup. |
|
| |
|
| EDOs: 12, 169, 181, 193, 205, 217, 229, 241, 374, 398, 422, 446, 591, 603<br>
| | == See also == |
| | * [[7edf]] – relative edf |
| | * [[12edo]] – relative edo |
| | * [[19edt]] – relative edt |
| | * [[31ed6]] – relative ed6 |
| | * [[34ed7]] – relative ed7 |
| | * [[40ed10]] – relative ed10 |
| | * [[42ed11]] – relative ed11 |
| | * [[76ed80]] – close to the zeta-optimized tuning for 12edo |
| | * [[1ed18/17|AS18/17]] – relative [[AS|ambitonal sequence]] |
|
| |
|
| ==See also== | | == External links == |
| *[[12edo]]: relative EDO | | * [https://sevish.com/scaleworkshop/index.htm?name=28ed5&data=99.5112040666012%0A199.0224081332025%0A298.5336121998037%0A398.0448162664050%0A497.5560203330062%0A597.0672243996075%0A696.5784284662087%0A796.0896325328099%0A895.6008365994112%0A995.1120406660124%0A1094.6232447326137%0A1194.1344487992149%0A1293.6456528658162%0A1393.1568569324174%0A1492.6680609990187%0A1592.1792650656199%0A1691.6904691322211%0A1791.2016731988224%0A1890.7128772654236%0A1990.2240813320249%0A2089.7352853986261%0A2189.2464894652274%0A2288.7576935318286%0A2388.2688975984298%0A2487.7801016650311%0A2587.2913057316323%0A2686.8025097982336%0A2786.3137138648348&freq=220&midi=57&vert=10&horiz=1 Play 28ed5] – Scale Workshop |
| *[[19ED3|19ed3]]: relative ED3
| | * [http://terpstrakeyboard.com/web-app/keys.htm?fundamental=220&right=2&upright=1&size=25&rotation=13.897886248013985&instrument=sawtooth&enum=false&spectrum_colors=false&no_labels=false&scale=!%2028ed5.scl%0A!%20%0A28ed5%0A28%0A!%0A99.5112040666012%0A199.0224081332025%0A298.5336121998037%0A398.0448162664050%0A497.5560203330062%0A597.0672243996075%0A696.5784284662087%0A796.0896325328099%0A895.6008365994112%0A995.1120406660124%0A1094.6232447326137%0A1194.1344487992149%0A1293.6456528658162%0A1393.1568569324174%0A1492.6680609990187%0A1592.1792650656199%0A1691.6904691322211%0A1791.2016731988224%0A1890.7128772654236%0A1990.2240813320249%0A2089.7352853986261%0A2189.2464894652274%0A2288.7576935318286%0A2388.2688975984298%0A2487.7801016650311%0A2587.2913057316323%0A2686.8025097982336%0A2786.3137138648348&names=A%0AA%23%2FBb%0AB%0AC%0AC%23%2FDb%0AD%0AD%23%2FEb%0AE%0AE%23%2FFb%0AF%0AG%0AG%23%2FHb%0AH%0AH%23%2FIb%0AI%0AI%23%2FJb%0AJ%0AK%0AK%23%2FLb%0AL%0AL%23%2FMb%0AM%0AM%23%2FNb%0AN%0AO%0AO%23%2FPb%0AP%0AP%23%2FAb¬e_colors=ffffff%0A7b7b7b%0Affffff%0Affffff%0A7b7b7b%0Affffff%0A7b7b7b%0Affffff%0A7b7b7b%0Affffff%0Affffff%0A7b7b7b%0Affffff%0A7b7b7b%0Affffff%0A7b7b7b%0Affffff%0Affffff%0A7b7b7b%0Affffff%0A7b7b7b%0Affffff%0A7b7b7b%0Affffff%0Affffff%0A7b7b7b%0Affffff%0A7b7b7b Play 28ed5] – Terpstra Keyboard WebApp |
| *[[31ed6]]: relative ED6 | |
| *[[34ed7]]: relative ED7
| |
| *[[40ed10]]: relative ED10
| |
| *[[42ed11]]: relative ED11
| |
|
| |
|
| [[Category:Ed5]] | | [[Category:12edo]] |
| [[Category:Edonoi]]
| |