Tags: Mobile edit Mobile web edit |
|
(10 intermediate revisions by 3 users not shown) |
Line 1: |
Line 1: |
| | {{Infobox ET}} |
| '''5ED5/4''' is the [[Equal-step tuning|equal division]] of the [[5/4|just major third]] into five parts of 77.2627 [[cent|cents]] each, corresponding to every second step of [[31edo]]. It is related to [[Carlos Alpha]] and the 7-limit temperaments which temper out 2100875/2097152 (including the [[Breedsmic temperaments|tertiaseptal temperament]] and the [[Starling temperaments|valentine temperament]]). | | '''5ED5/4''' is the [[Equal-step tuning|equal division]] of the [[5/4|just major third]] into five parts of 77.2627 [[cent|cents]] each, corresponding to every second step of [[31edo]]. It is related to [[Carlos Alpha]] and the 7-limit temperaments which temper out 2100875/2097152 (including the [[Breedsmic temperaments|tertiaseptal temperament]] and the [[Starling temperaments|valentine temperament]]). |
|
| |
|
Line 272: |
Line 273: |
| | | (5/4)<font style="vertical-align:super;font-size:0.8em;">13</font> = 1220703125/67108864 | | | | (5/4)<font style="vertical-align:super;font-size:0.8em;">13</font> = 1220703125/67108864 |
| |} | | |} |
| | |
| | == Harmonics == |
| | {{Harmonics in equal |
| | | steps = 5 |
| | | num = 5 |
| | | denom = 4 |
| | }} |
| | {{Harmonics in equal |
| | | steps = 5 |
| | | num = 5 |
| | | denom = 4 |
| | | start = 12 |
| | | collapsed = 1 |
| | }} |
|
| |
|
| ==5ED5/4 as a generator== | | ==5ED5/4 as a generator== |
Line 278: |
Line 293: |
|
| |
|
| ===Tertiaseptal=== | | ===Tertiaseptal=== |
| Aside from 2100875/2097152, tertiaseptal temperament tempers out 2401/2400, 65625/65536, and 703125/702464 in the 7-limit. It can be described as the 31&171 temperament, and the step interval of 5ED5/4 (tuned between 256/245 and 68/65) can serve as its generator. In the 17-limit, it tempers out 243/242, 375/374, 441/440, 625/624, and 3584/3575. | | Aside from 2100875/2097152, [[tertiaseptal]] temperament tempers out 2401/2400, 65625/65536, and 703125/702464 in the 7-limit. It can be described as the 31&171 temperament, and the step interval of 5ED5/4 (tuned between 256/245 and 68/65) can serve as its generator. In the 17-limit, it tempers out 243/242, 375/374, 441/440, 625/624, and 3584/3575. |
| | |
| {| class="wikitable"
| |
| |-
| |
| ! | generator
| |
| ! | cents value <sup>a</sup><br>(octave-reduced)
| |
| ! | 17-limit ratio<br>(octave-reduced)
| |
| |-
| |
| | | 1
| |
| | | 77.2
| |
| | | 117/112, 256/245, 68/65
| |
| |-
| |
| | | 2
| |
| | | 154.4
| |
| | | 130/119, [[35/32]]
| |
| |-
| |
| | | 3
| |
| | | 231.6
| |
| | | '''[[8/7]]'''
| |
| |-
| |
| | | 4
| |
| | | 308.8
| |
| | | 117/98, 140/117
| |
| |-
| |
| | | 5
| |
| | | 386.0
| |
| | | '''[[5/4]]'''
| |
| |-
| |
| | | 6
| |
| | | 463.2
| |
| | | '''[[17/13]]'''
| |
| |-
| |
| | | 7
| |
| | | 540.4
| |
| | | 175/128
| |
| |-
| |
| | | 8
| |
| | | 617.6
| |
| | | '''[[10/7]]'''
| |
| |-
| |
| | | 9
| |
| | | 694.8
| |
| | | 112/75
| |
| |-
| |
| | | 10
| |
| | | 772.0
| |
| | | [[25/16]]
| |
| |-
| |
| | | 11
| |
| | | 849.2
| |
| | | 44/27, '''[[18/11]]'''
| |
| |-
| |
| | | 12
| |
| | | 926.4
| |
| | | 128/75
| |
| |-
| |
| | | 13
| |
| | | 1003.6
| |
| | | [[25/14]]
| |
| |-
| |
| | | 14
| |
| | | 1080.8
| |
| | | '''[[28/15]]'''
| |
| |-
| |
| | | 15
| |
| | | 1158.0
| |
| | | 39/20
| |
| |-
| |
| | | 16
| |
| | | 35.2
| |
| | | 55/54, 52/51, 51/50, [[50/49]], [[49/48]], [[45/44]]
| |
| |-
| |
| | | 17
| |
| | | 112.4
| |
| | | '''[[16/15]]'''
| |
| |-
| |
| | | 18
| |
| | | 189.6
| |
| | | 39/35
| |
| |-
| |
| | | 19
| |
| | | 266.8
| |
| | | '''[[7/6]]'''
| |
| |-
| |
| | | 20
| |
| | | 344.0
| |
| | | 39/32
| |
| |-
| |
| | | 21
| |
| | | 421.2
| |
| | | [[51/40]]
| |
| |-
| |
| | | 22
| |
| | | 498.4
| |
| | | '''[[4/3]]'''
| |
| |-
| |
| | | 23
| |
| | | 575.6
| |
| | | 39/28
| |
| |-
| |
| | | 24
| |
| | | 652.8
| |
| | | [[35/24]]
| |
| |-
| |
| | | 25
| |
| | | 730.0
| |
| | | [[32/21]]
| |
| |-
| |
| | | 26
| |
| | | 807.2
| |
| | | 51/32
| |
| |-
| |
| | | 27
| |
| | | 884.4
| |
| | | '''[[5/3]]'''
| |
| |-
| |
| | | 28
| |
| | | 961.6
| |
| | | 68/39
| |
| |-
| |
| | | 29
| |
| | | 1038.8
| |
| | | 51/28
| |
| |-
| |
| | | 30
| |
| | | 1116.0
| |
| | | [[40/21]], [[21/11]]
| |
| |-
| |
| | | 31
| |
| | | 1193.2
| |
| | |
| |
| |-
| |
| | | 32
| |
| | | 70.4
| |
| | | [[26/25]], [[25/24]]
| |
| |-
| |
| | | 33
| |
| | | 147.6
| |
| | | '''[[12/11]]'''
| |
| |-
| |
| | | 34
| |
| | | 224.8
| |
| | | 91/80
| |
| |-
| |
| | | 35
| |
| | | 302.0
| |
| | | [[25/21]]
| |
| |-
| |
| | | 36
| |
| | | 379.3
| |
| | | 96/77
| |
| |-
| |
| | | 37
| |
| | | 456.5
| |
| | | '''[[13/10]]'''
| |
| |-
| |
| | | 38
| |
| | | 533.7
| |
| | | 34/25, '''[[15/11]]'''
| |
| |-
| |
| | | 39
| |
| | | 610.9
| |
| | | [[64/45]]
| |
| |-
| |
| | | 40
| |
| | | 688.1
| |
| | | 52/35
| |
| |-
| |
| | | 41
| |
| | | 765.3
| |
| | | '''[[14/9]]'''
| |
| |-
| |
| | | 42
| |
| | | 842.5
| |
| | | '''[[13/8]]'''
| |
| |-
| |
| | | 43
| |
| | | 919.7
| |
| | | '''[[17/10]]'''
| |
| |-
| |
| | | 44
| |
| | | 996.9
| |
| | | '''[[16/9]]'''
| |
| |-
| |
| | | 45
| |
| | | 1074.1
| |
| | | '''[[13/7]]'''
| |
| |-
| |
| | | 46
| |
| | | 1151.3
| |
| | | 68/35, [[35/18]]
| |
| |-
| |
| | | 47
| |
| | | 28.5
| |
| | | [[65/64]], [[64/63]], [[56/55]]
| |
| |-
| |
| | | 48
| |
| | | 105.7
| |
| | | '''[[17/16]]'''
| |
| |-
| |
| | | 49
| |
| | | 182.9
| |
| | | '''[[10/9]]'''
| |
| |-
| |
| | | 50
| |
| | | 260.1
| |
| | | [[64/55]]
| |
| |-
| |
| | | 51
| |
| | | 337.3
| |
| | | '''[[17/14]]'''
| |
| |-
| |
| | | 52
| |
| | | 414.5
| |
| | | '''[[14/11]]'''
| |
| |-
| |
| | | 53
| |
| | | 491.7
| |
| | | 65/49
| |
| |-
| |
| | | 54
| |
| | | 568.9
| |
| | | [[25/18]]
| |
| |-
| |
| | | 55
| |
| | | 646.1
| |
| | | '''[[16/11]]'''
| |
| |-
| |
| | | 56
| |
| | | 723.3
| |
| | | 85/56
| |
| |-
| |
| | | 57
| |
| | | 800.5
| |
| | | 35/22
| |
| |-
| |
| | | 58
| |
| | | 877.7
| |
| | | 128/77
| |
| |-
| |
| | | 59
| |
| | | 954.9
| |
| | | '''[[26/15]]'''
| |
| |-
| |
| | | 60
| |
| | | 1032.1
| |
| | | '''[[20/11]]'''
| |
| |-
| |
| | | 61
| |
| | | 1109.3
| |
| | | 91/48, 256/135
| |
| |-
| |
| | | 62
| |
| | | 1186.5
| |
| | | 208/105
| |
| |-
| |
| | | 63
| |
| | | 63.7
| |
| | | [[28/27]]
| |
| |-
| |
| | | 64
| |
| | | 140.9
| |
| | | '''[[13/12]]'''
| |
| |-
| |
| | | 65
| |
| | | 218.1
| |
| | | '''[[17/15]]''', [[25/22]]
| |
| |-
| |
| | | 66
| |
| | | 295.3
| |
| | | [[32/27]]
| |
| |-
| |
| | | 67
| |
| | | 372.5
| |
| | | [[26/21]]
| |
| |-
| |
| | | 68
| |
| | | 449.7
| |
| | | [[35/27]]
| |
| |-
| |
| | | 69
| |
| | | 526.9
| |
| | | 65/48
| |
| |-
| |
| | | 70
| |
| | | 604.1
| |
| | | '''[[17/12]]'''
| |
| |-
| |
| | | 71
| |
| | | 681.3
| |
| | | [[40/27]]
| |
| |-
| |
| | | 72
| |
| | | 758.5
| |
| | | 65/42
| |
| |-
| |
| | | 73
| |
| | | 835.7
| |
| | | [[34/21]]
| |
| |-
| |
| | | 74
| |
| | | 912.9
| |
| | | 56/33
| |
| |-
| |
| | | 75
| |
| | | 990.1
| |
| | | 39/22
| |
| |-
| |
| | | 76
| |
| | | 1067.3
| |
| | | 50/27
| |
| |-
| |
| | | 77
| |
| | | 1144.5
| |
| | | 64/33
| |
| |-
| |
| | | 78
| |
| | | 21.7
| |
| | | 91/90, 85/84, 78/77
| |
| |-
| |
| | | 79
| |
| | | 98.9
| |
| | | 35/33
| |
| |-
| |
| | | 80
| |
| | | 176.1
| |
| | | 195/176
| |
| |-
| |
| | | 81
| |
| | | 253.3
| |
| | | 52/45
| |
| |-
| |
| | | 82
| |
| | | 330.5
| |
| | | 40/33
| |
| |-
| |
| | | 83
| |
| | | 407.7
| |
| | | 91/72
| |
| |-
| |
| | | 84
| |
| | | 484.9
| |
| | | 119/90
| |
| |-
| |
| | | 85
| |
| | | 562.1
| |
| | | 112/81
| |
| |-
| |
| | | 86
| |
| | | 639.3
| |
| | | '''[[13/9]]'''
| |
| |-
| |
| | | 87
| |
| | | 716.5
| |
| | | 68/45, 50/33
| |
| |-
| |
| | | 88
| |
| | | 793.7
| |
| | | 128/81
| |
| |-
| |
| | | 89
| |
| | | 870.9
| |
| | | 119/72
| |
| |-
| |
| | | 90
| |
| | | 948.1
| |
| | | 140/81
| |
| |-
| |
| | | 91
| |
| | | 1025.3
| |
| | | 65/36
| |
| |-
| |
| | | 92
| |
| | | 1102.5
| |
| | | '''[[17/9]]'''
| |
| |-
| |
| | | 93
| |
| | | 1179.7
| |
| | | [[160/81]], 196/99, 240/121
| |
| |-
| |
| | | 94
| |
| | | 56.9
| |
| | | 91/88
| |
| |-
| |
| | | 95
| |
| | | 134.1
| |
| | | 68/63
| |
| |-
| |
| | | 96
| |
| | | 211.3
| |
| | | 112/99
| |
| |-
| |
| | | 97
| |
| | | 288.5
| |
| | | '''[[13/11]]'''
| |
| |-
| |
| | | 98
| |
| | | 365.7
| |
| | | 68/55
| |
| |-
| |
| | | 99
| |
| | | 442.9
| |
| | | 128/99
| |
| |-
| |
| | | 100
| |
| | | 520.1
| |
| | | 104/77
| |
| |-
| |
| | | 101
| |
| | | 597.3
| |
| | |
| |
| |-
| |
| | | 102
| |
| | | 674.5
| |
| | |
| |
| |-
| |
| | | 103
| |
| | | 751.7
| |
| | | '''[[17/11]]'''
| |
| |-
| |
| | | 104
| |
| | | 828.9
| |
| | | 160/99
| |
| |-
| |
| | | 105
| |
| | | 906.1
| |
| | |
| |
| |-
| |
| | | 106
| |
| | | 983.3
| |
| | | 136/77
| |
| |-
| |
| | | 107
| |
| | | 1060.6
| |
| | |
| |
| |-
| |
| | | 108
| |
| | | 1137.8
| |
| | | 52/27, 85/44
| |
| |-
| |
| | | 109
| |
| | | 15.0
| |
| | | [[100/99]]
| |
| |-
| |
| | | 110
| |
| | | 92.2
| |
| | | 128/121, [[256/243]]
| |
| |-
| |
| | | 111
| |
| | | 169.4
| |
| | |
| |
| |-
| |
| | | 112
| |
| | | 246.6
| |
| | |
| |
| |-
| |
| | | 113
| |
| | | 323.8
| |
| | |
| |
| |-
| |
| | | 114
| |
| | | 401.0
| |
| | | 34/27
| |
| |-
| |
| | | 115
| |
| | | 478.2
| |
| | |
| |
| |-
| |
| | | 116
| |
| | | 555.4
| |
| | |
| |
| |-
| |
| | | 117
| |
| | | 632.6
| |
| | |
| |
| |-
| |
| | | 118
| |
| | | 709.8
| |
| | |
| |
| |-
| |
| | | 119
| |
| | | 787.0
| |
| | | 52/33
| |
| |-
| |
| | | 120
| |
| | | 864.2
| |
| | |
| |
| |-
| |
| | | 121
| |
| | | 941.4
| |
| | |
| |
| |-
| |
| | | 122
| |
| | | 1018.6
| |
| | |
| |
| |-
| |
| | | 123
| |
| | | 1095.8
| |
| | |
| |
| |-
| |
| | | 124
| |
| | | 1173.0
| |
| | | 65/33
| |
| |-
| |
| | | 125
| |
| | | 50.2
| |
| | | 34/33
| |
| |}
| |
| <sup>a</sup> in 17-limit POTE tuning
| |
|
| |
|
| ===Tertia=== | | ===Tertia=== |
| Aside from 2100875/2097152, tertia temperament tempers out 385/384, 1331/1323, and 1375/1372 in the 11-limit. It can be described as the 31&140 temperament, and the step interval of 5ED5/4 (tuned between 256/245 and 22/21) can serve as its generator. In the 17-limit, it tempers out 352/351, 385/384, 561/560, 625/624, and 715/714. | | Aside from 2100875/2097152, [[tertiaseptal|tertia]] temperament tempers out 385/384, 1331/1323, and 1375/1372 in the 11-limit. It can be described as the 31&140 temperament, and the step interval of 5ED5/4 (tuned between 256/245 and 68/65) can serve as its generator. In the 17-limit, it tempers out 352/351, 385/384, 561/560, 625/624, and 715/714. |
| | |
| {| class="wikitable"
| |
| |-
| |
| ! | generator
| |
| ! | cents value<br>(octave-reduced)
| |
| ! | 11-limit ratio<br>(octave-reduced)
| |
| |-
| |
| | | 1
| |
| | | 77.2
| |
| | | 256/245
| |
| |-
| |
| | | 2
| |
| | | 154.3
| |
| | | '''[[12/11]]''', [[35/32]]
| |
| |-
| |
| | | 3
| |
| | | 231.5
| |
| | | '''[[8/7]]'''
| |
| |-
| |
| | | 4
| |
| | | 308.6
| |
| | |
| |
| |-
| |
| | | 5
| |
| | | 385.8
| |
| | | '''[[5/4]]'''
| |
| |-
| |
| | | 6
| |
| | | 463.0
| |
| | |
| |
| |-
| |
| | | 7
| |
| | | 540.1
| |
| | | 175/128
| |
| |-
| |
| | | 8
| |
| | | 617.3
| |
| | | '''[[10/7]]'''
| |
| |-
| |
| | | 9
| |
| | | 694.5
| |
| | | 112/75
| |
| |-
| |
| | | 10
| |
| | | 771.6
| |
| | | [[25/16]]
| |
| |-
| |
| | | 11
| |
| | | 848.8
| |
| | |
| |
| |-
| |
| | | 12
| |
| | | 925.9
| |
| | | 128/75
| |
| |-
| |
| | | 13
| |
| | | 1003.1
| |
| | | [[25/14]]
| |
| |-
| |
| | | 14
| |
| | | 1080.3
| |
| | | '''[[28/15]]'''
| |
| |-
| |
| | | 15
| |
| | | 1157.4
| |
| | |
| |
| |-
| |
| | | 16
| |
| | | 34.6
| |
| | | [[50/49]], [[49/48]]
| |
| |-
| |
| | | 17
| |
| | | 111.8
| |
| | | '''[[16/15]]'''
| |
| |-
| |
| | | 18
| |
| | | 188.9
| |
| | |
| |
| |-
| |
| | | 19
| |
| | | 266.1
| |
| | | '''[[7/6]]'''
| |
| |-
| |
| | | 20
| |
| | | 343.2
| |
| | | '''[[11/9]]'''
| |
| |-
| |
| | | 21
| |
| | | 420.4
| |
| | | '''[[14/11]]'''
| |
| |-
| |
| | | 22
| |
| | | 497.6
| |
| | | '''[[4/3]]'''
| |
| |-
| |
| | | 23
| |
| | | 574.7
| |
| | |
| |
| |-
| |
| | | 24
| |
| | | 651.9
| |
| | | '''[[16/11]]''', [[35/24]]
| |
| |-
| |
| | | 25
| |
| | | 729.1
| |
| | | [[32/21]]
| |
| |-
| |
| | | 26
| |
| | | 806.2
| |
| | |
| |
| |-
| |
| | | 27
| |
| | | 883.4
| |
| | | '''[[5/3]]'''
| |
| |-
| |
| | | 28
| |
| | | 960.5
| |
| | |
| |
| |-
| |
| | | 29
| |
| | | 1037.7
| |
| | | '''[[20/11]]'''
| |
| |-
| |
| | | 30
| |
| | | 1114.9
| |
| | |
| |
| |-
| |
| | | 31
| |
| | | 1192.0
| |
| | |
| |
| |-
| |
| | | 32
| |
| | | 69.2
| |
| | |
| |
| |-
| |
| | | 33
| |
| | | 146.4
| |
| | |
| |
| |-
| |
| | | 34
| |
| | | 223.5
| |
| | |
| |
| |-
| |
| | | 35
| |
| | | 300.7
| |
| | |
| |
| |-
| |
| | | 36
| |
| | | 377.8
| |
| | |
| |
| |-
| |
| | | 37
| |
| | | 455.0
| |
| | |
| |
| |-
| |
| | | 38
| |
| | | 532.2
| |
| | |
| |
| |-
| |
| | | 39
| |
| | | 609.3
| |
| | |
| |
| |-
| |
| | | 40
| |
| | | 686.5
| |
| | |
| |
| |-
| |
| | | 41
| |
| | | 763.7
| |
| | | '''[[14/9]]'''
| |
| |-
| |
| | | 42
| |
| | | 840.8
| |
| | | '''[[13/8]]'''
| |
| |-
| |
| | | 43
| |
| | | 918.0
| |
| | |
| |
| |-
| |
| | | 44
| |
| | | 995.1
| |
| | | '''[[16/9]]'''
| |
| |-
| |
| | | 45
| |
| | | 1072.3
| |
| | |
| |
| |-
| |
| | | 46
| |
| | | 1149.5
| |
| | |
| |
| |-
| |
| | | 47
| |
| | | 26.6
| |
| | |
| |
| |-
| |
| | | 48
| |
| | | 103.8
| |
| | | '''[[17/16]]'''
| |
| |-
| |
| | | 49
| |
| | | 180.9
| |
| | | '''[[10/9]]'''
| |
| |-
| |
| | | 50
| |
| | | 258.1
| |
| | |
| |
| |-
| |
| | | 51
| |
| | | 335.3
| |
| | |
| |
| |-
| |
| | | 52
| |
| | | 412.4
| |
| | |
| |
| |-
| |
| | | 53
| |
| | | 489.6
| |
| | |
| |
| |-
| |
| | | 54
| |
| | | 566.8
| |
| | | [[25/18]]
| |
| |-
| |
| | | 55
| |
| | | 643.9
| |
| | |
| |
| |-
| |
| | | 56
| |
| | | 721.1
| |
| | |
| |
| |-
| |
| | | 57
| |
| | | 798.2
| |
| | |
| |
| |-
| |
| | | 58
| |
| | | 875.4
| |
| | |
| |
| |-
| |
| | | 59
| |
| | | 952.6
| |
| | |
| |
| |-
| |
| | | 60
| |
| | | 1029.7
| |
| | |
| |
| |-
| |
| | | 61
| |
| | | 1106.9
| |
| | |
| |
| |-
| |
| | | 62
| |
| | | 1184.1
| |
| | |
| |
| |-
| |
| | | 63
| |
| | | 61.2
| |
| | |
| |
| |-
| |
| | | 64
| |
| | | 138.4
| |
| | |
| |
| |-
| |
| | | 65
| |
| | | 215.5
| |
| | |
| |
| |-
| |
| | | 66
| |
| | | 292.7
| |
| | | [[32/27]]
| |
| |-
| |
| | | 67
| |
| | | 369.9
| |
| | |
| |
| |-
| |
| | | 68
| |
| | | 447.0
| |
| | |
| |
| |-
| |
| | | 69
| |
| | | 524.2
| |
| | |
| |
| |-
| |
| | | 70
| |
| | | 601.4
| |
| | |
| |
| |-
| |
| | | 71
| |
| | | 678.5
| |
| | |
| |
| |-
| |
| | | 72
| |
| | | 755.7
| |
| | |
| |
| |-
| |
| | | 73
| |
| | | 832.8
| |
| | |
| |
| |-
| |
| | | 74
| |
| | | 910.0
| |
| | |
| |
| |-
| |
| | | 75
| |
| | | 987.2
| |
| | |
| |
| |-
| |
| | | 76
| |
| | | 1064.3
| |
| | |
| |
| |-
| |
| | | 77
| |
| | | 1141.5
| |
| | |
| |
| |-
| |
| | | 78
| |
| | | 18.7
| |
| | |
| |
| |-
| |
| | | 79
| |
| | | 95.8
| |
| | |
| |
| |-
| |
| | | 80
| |
| | | 173.0
| |
| | |
| |
| |-
| |
| | | 81
| |
| | | 250.1
| |
| | |
| |
| |-
| |
| | | 82
| |
| | | 327.3
| |
| | |
| |
| |-
| |
| | | 83
| |
| | | 404.5
| |
| | |
| |
| |-
| |
| | | 84
| |
| | | 481.6
| |
| | |
| |
| |-
| |
| | | 85
| |
| | | 558.8
| |
| | |
| |
| |-
| |
| | | 86
| |
| | | 636.0
| |
| | |
| |
| |-
| |
| | | 87
| |
| | | 713.1
| |
| | |
| |
| |-
| |
| | | 88
| |
| | | 790.3
| |
| | |
| |
| |-
| |
| | | 89
| |
| | | 867.4
| |
| | |
| |
| |-
| |
| | | 90
| |
| | | 944.6
| |
| | |
| |
| |-
| |
| | | 91
| |
| | | 1021.8
| |
| | |
| |
| |-
| |
| | | 92
| |
| | | 1098.9
| |
| | |
| |
| |-
| |
| | | 93
| |
| | | 1176.1
| |
| | |
| |
| |-
| |
| | | 94
| |
| | | 53.2
| |
| | |
| |
| |-
| |
| | | 95
| |
| | | 130.4
| |
| | |
| |
| |-
| |
| | | 96
| |
| | | 207.6
| |
| | |
| |
| |-
| |
| | | 97
| |
| | | 284.7
| |
| | |
| |
| |-
| |
| | | 98
| |
| | | 361.9
| |
| | |
| |
| |-
| |
| | | 99
| |
| | | 439.1
| |
| | |
| |
| |-
| |
| | | 100
| |
| | | 516.2
| |
| | |
| |
| |-
| |
| | | 101
| |
| | | 593.4
| |
| | |
| |
| |-
| |
| | | 102
| |
| | | 670.5
| |
| | |
| |
| |-
| |
| | | 103
| |
| | | 747.7
| |
| | |
| |
| |-
| |
| | | 104
| |
| | | 824.9
| |
| | |
| |
| |-
| |
| | | 105
| |
| | | 902.0
| |
| | |
| |
| |-
| |
| | | 106
| |
| | | 979.2
| |
| | |
| |
| |-
| |
| | | 107
| |
| | | 1056.4
| |
| | |
| |
| |-
| |
| | | 108
| |
| | | 1133.5
| |
| | |
| |
| |-
| |
| | | 109
| |
| | | 10.7
| |
| | |
| |
| |-
| |
| | | 110
| |
| | | 87.8
| |
| | |
| |
| |-
| |
| | | 111
| |
| | | 165.0
| |
| | |
| |
| |-
| |
| | | 112
| |
| | | 242.2
| |
| | |
| |
| |-
| |
| | | 113
| |
| | | 319.3
| |
| | |
| |
| |-
| |
| | | 114
| |
| | | 396.5
| |
| | | 34/27
| |
| |}
| |
|
| |
|
| [[Category:5/4]] | | [[Category:Major third]] |
| [[Category:Equal-step tuning]] | | [[Category:Equal-step tuning]] |
| [[Category:Edonoi]]
| |