Ragismic microtemperaments: Difference between revisions
Wikispaces>genewardsmith **Imported revision 150551101 - Original comment: ** |
m Text replacement - "Category:Temperament collections" to "Category:Temperament collections Category:Pages with mostly numerical content" |
||
(310 intermediate revisions by 26 users not shown) | |||
Line 1: | Line 1: | ||
{{Technical data page}} | |||
This is | This is a collection of [[rank-2 temperament|rank-2]] [[regular temperament|temperaments]] [[tempering out]] the ragisma, [[4375/4374]] ({{monzo| -1 -7 4 1 }}). The ragisma is the smallest [[7-limit]] [[superparticular ratio]]. | ||
= | Since {{nowrap|(10/9)<sup>4</sup> {{=}} (4375/4374)⋅(32/21) }}, the minor tone 10/9 tends to be an interval of relatively low [[complexity]] in temperaments tempering out the ragisma, though when looking at [[microtemperament]]s the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have {{nowrap| 7/6 {{=}} (4375/4374)⋅(27/25)<sup>2</sup> }}, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal. | ||
Microtemperaments considered below, sorted by [[badness]], are supermajor, enneadecal, semidimi, brahmagupta, abigail, gamera, crazy, orga, seniority, monzismic, semidimfourth, acrokleismic, quasithird, deca, keenanose, aluminium, quatracot, moulin, and palladium. Some near-microtemperaments are appended as octoid, parakleismic, counterkleismic, quincy, sfourth, and trideci. Discussed elsewhere are: | |||
* ''[[Hystrix]]'' (+36/35) → [[Porcupine family #Hystrix|Porcupine family]] | |||
* ''[[Rhinoceros]]'' (+49/48) → [[Unicorn family #Rhinoceros|Unicorn family]] | |||
* ''[[Crepuscular]]'' (+50/49) → [[Fifive family #Crepuscular|Fifive family]] | |||
* ''[[Modus]]'' (+64/63) → [[Tetracot family #Modus|Tetracot family]] | |||
* ''[[Flattone]]'' (+81/80) → [[Meantone family #Flattone|Meantone family]] | |||
* [[Sensi]] (+126/125 or 245/243) → [[Sensipent family #Sensi|Sensipent family]] | |||
* [[Catakleismic]] (+225/224) → [[Kleismic family #Catakleismic|Kleismic family]] | |||
* [[Unidec]] (+1029/1024) → [[Gamelismic clan #Unidec|Gamelismic clan]] | |||
* ''[[Quartonic]]'' (+1728/1715 or 4000/3969) → [[Quartonic family]] | |||
* ''[[Srutal]]'' (+2048/2025) → [[Diaschismic family #Srutal|Diaschismic family]] | |||
* [[Ennealimmal]] (+2401/2400) → [[Septiennealimmal clan #Ennealimmal|Septiennealimmal clan]] | |||
* ''[[Maja]]'' (+2430/2401 or 3125/3087) → [[Maja family #Septimal maja|Maja family]] | |||
* [[Amity]] (+5120/5103) → [[Amity family #Septimal amity|Amity family]] | |||
* [[Pontiac]] (+32805/32768) → [[Schismatic family #Pontiac|Schismatic family]] | |||
* ''[[Zarvo]]'' (+33075/32768) → [[Gravity family #Zarvo|Gravity family]] | |||
* ''[[Whirrschmidt]]'' (+393216/390625) → [[Würschmidt family #Whirrschmidt|Würschmidt family]] | |||
* ''[[Mitonic]]'' (+2100875/2097152) → [[Minortonic family #Mitonic|Minortonic family]] | |||
* ''[[Vishnu]]'' (+29360128/29296875) → [[Vishnuzmic family #Septimal vishnu|Vishnuzmic family]] | |||
* ''[[Vulture]]'' (+33554432/33480783) → [[Vulture family #Septimal vulture|Vulture family]] | |||
* ''[[Alphatrillium]]'' (+{{monzo| 40 -22 -1 -1 }}) → [[Alphatricot family #Trillium|Alphatricot family]] | |||
* ''[[Vacuum]]'' (+{{monzo| -68 18 17 }}) → [[Vavoom family #Vacuum|Vavoom family]] | |||
* ''[[Unlit]]'' (+{{monzo| 41 -20 -4 }}) → [[Undim family #Unlit|Undim family]] | |||
* ''[[Chlorine]]'' (+{{monzo| -52 -17 34}}) → [[17th-octave temperaments #Chlorine|17th-octave temperaments]] | |||
* ''[[Quindro]]'' (+{{monzo| 56 -28 -5 }}) → [[Quindromeda family #Quindro|Quindromeda family]] | |||
* ''[[Dzelic]]'' (+{{monzo|-223 47 -11 62}}) → [[37th-octave temperaments#Dzelic|37th-octave temperaments]] | |||
== Supermajor == | |||
The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2<sup>15</sup>)/3, 46 give (2<sup>19</sup>)/5, and 75 give (2<sup>30</sup>)/7. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80-note mos is presumably the place to start, and if that is not enough notes for you, there is always the 171-note mos. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 52734375/52706752 | |||
= | {{Mapping|legend=1| 1 15 19 30 | 0 -37 -46 -75 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 435.082 | |||
= | {{Optimal ET sequence|legend=1| 11, 80, 171, 764, 1106, 1277, 3660, 4937, 6214 }} | ||
=== | [[Badness]]: 0.010836 | ||
=== Semisupermajor === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 35156250/35153041 | |||
Mapping: {{mapping| 2 30 38 60 41 | 0 -37 -46 -75 -47 }} | |||
Optimal tuning (POTE): ~99/70 = 1\2, ~9/7 = 435.082 | |||
{{Optimal ET sequence|legend=1| 80, 342, 764, 1106, 1448, 2554, 4002f, 6556cf }} | |||
Badness: 0.012773 | |||
== Enneadecal == | |||
Enneadecal temperament tempers out the [[enneadeca]], {{monzo| -14 -19 19 }}, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be ~25/24, ~27/25, ~10/9, ~5/4 or ~3/2. To this we may add possible 7-limit generators such as ~225/224, ~15/14 or ~9/7. Since enneadecal tempers out [[703125/702464]], the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)<sup>1/3</sup>. This is the interval needed to adjust the 1/3-comma meantone flat fifths and major thirds of [[19edo]] up to just ones. [[171edo]] is a good tuning for either the 5- or 7-limit, and [[494edo]] shows how to extend the temperament to the 11- or 13-limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use [[665edo]] for a tuning. | |||
''For the 5-limit temperament, see [[19th-octave temperaments#(5-limit) enneadecal]].'' | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 703125/702464 | |||
{{Mapping|legend=1| 19 0 14 -37 | 0 1 1 3 }} | |||
: mapping generators: ~28/27, ~3 | |||
[[Optimal tuning]] ([[CTE]]): ~28/27 = 1\19, ~3/2 = 701.9275 (~225/224 = 7.1907) | |||
{{Optimal ET sequence|legend=1| 19, …, 152, 171, 665, 836, 1007, 2185, 3192c }} | |||
[[Badness]]: 0.010954 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 540/539, 4375/4374, 16384/16335 | |||
Mapping: {{mapping| 19 0 14 -37 126 | 0 1 1 3 -2 }} | |||
Optimal tuning (CTE): ~28/27 = 1\19, ~3/2 = 702.1483 (~225/224 = 7.4115) | |||
{{Optimal ET sequence|legend=1| 19, 133d, 152, 323e, 475de, 627de }} | |||
Badness: 0.043734 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 540/539, 625/624, 729/728, 2205/2197 | |||
Mapping: {{mapping| 19 0 14 -37 126 -20 | 0 1 1 3 -2 3 }} | |||
Optimal tuning (CTE): ~28/27 = 1\19, ~3/2 = 701.9258 (~225/224 = 7.1890) | |||
{{Optimal ET sequence|legend=1| 19, 133df, 152f, 323ef }} | |||
Badness: 0.033545 | |||
=== Hemienneadecal === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 234375/234256 | |||
Mapping: {{mapping| 38 0 28 -74 11 | 0 1 1 3 2 }} | |||
: mapping generators: ~55/54, ~3 | |||
Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9351 (~225/224 = 7.1983) | |||
{{Optimal ET sequence|legend=1| 152, 342, 836, 1178, 2014, 3192ce, 5206ce }} | |||
Badness: 0.009985 | |||
==== Hemienneadecalis ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 1716/1715, 2080/2079, 3025/3024, 234375/234256 | |||
Mapping: {{mapping| 38 0 28 -74 11 -281 | 0 1 1 3 2 7 }} | |||
Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9955 (~225/224 = 7.2587) | |||
{{Optimal ET sequence|legend=1| 152f, 342f, 494 }} | |||
Badness: 0.020782 | |||
==== Hemienneadec ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 3025/3024, 4096/4095, 4375/4374, 31250/31213 | |||
Mapping: {{mapping| 38 0 28 -74 11 502 | 0 1 1 3 2 -6 }} | |||
Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9812 (~225/224 = 7.2444) | |||
{{Optimal ET sequence|legend=1| 152, 342, 494, 1330, 1824, 2318d }} | |||
Badness: 0.030391 | |||
==== Semihemienneadecal ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 3025/3024, 4225/4224, 4375/4374, 78125/78078 | |||
Mapping: {{mapping| 38 1 29 -71 13 111 | 0 2 2 6 4 1 }} | |||
: mapping generators: ~55/54 = 1\38, ~55/54, ~429/250 | |||
Optimal tuning (CTE): ~429/250 = 935.1789 (~144/143 = 12.1895) | |||
{{Optimal ET sequence|legend=1| 190, 304d, 494, 684, 1178, 2850, 4028ce }} | |||
Badness: 0.014694 | |||
=== Kalium === | |||
Named after the 19th element, potassium, and after an archaic variant of the element's name to resolve a name conflict. [[19/16]] can be used as a generator. Since it is enfactored in the 17-limit and lower, it makes no sense to name it for the lower subgroups. | |||
Subgroup: 2.3.5.7.11.13.17.19 | |||
Comma list: 2500/2499, 3250/3249, 4225/4224, 4375/4374, 11016/11011, 57375/57344 | |||
Mapping: {{mapping| 19 3 17 -28 82 92 159 78 | 0 10 10 30 -6 -8 -30 1 }} | |||
Optimal tuning (CTE): ~28/27 = 1\19, ~6545/5928 = 171.244 | |||
{{Optimal ET sequence|legend=1| 855, 988, 1843 }} | |||
== Semidimi == | |||
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Semidimi]].'' | |||
The generator of semidimi temperament is a semi-diminished fourth interval tuned between 162/125 and 35/27. It tempers out 5-limit {{monzo| -12 -73 55 }} and 7-limit 3955078125/3954653486, as well as 4375/4374. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 3955078125/3954653486 | |||
{{Mapping|legend=1| 1 36 48 61 | 0 -55 -73 -93 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 449.1270 | |||
{{Optimal ET sequence|legend=1| 171, 863, 1034, 1205, 1376, 1547, 1718, 4983, 6701, 8419 }} | |||
[[Badness]]: 0.015075 | |||
== Brahmagupta == | |||
The brahmagupta temperament has a period of 1/7 octave, tempering out the [[akjaysma]], {{monzo| 47 -7 -7 -7 }} = 140737488355328 / 140710042265625. | |||
Early in the design of the [[Sagittal]] notation system, Secor and Keenan found that an economical JI notation system could be defined, which divided the apotome (Pythagorean sharp or flat) into 21 almost-equal divisions. This required only 10 microtonal accidentals, although a few others were added for convenience in alternative spellings. This is called the Athenian symbol set (which includes the Spartan set). Its symbols are defined to exactly notate many common 11-limit ratios and the 17th harmonic, and to approximate within ±0.4 ¢ many common 13-limit ratios. If the divisions were made exactly equal, this would be the specific tuning of Brahmagupta temperament that has pure octaves and pure fifths, which can also be described as a 17-limit extension having 1/7th octave period (171.4286 ¢) and 1/21st apotome generator (5.4136 ¢). | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 70368744177664/70338939985125 | |||
{{Mapping|legend=1| 7 2 -8 53 | 0 3 8 -11 }} | |||
: mapping generators: ~1157625/1048576, ~27/20 | |||
[[Optimal tuning]] ([[POTE]]): ~1157625/1048576 = 1\7, ~27/20 = 519.716 | |||
{{Optimal ET sequence|legend=1| 7, 217, 224, 441, 1106, 1547 }} | |||
[[Badness]]: 0.029122 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 4000/3993, 4375/4374, 131072/130977 | |||
Mapping: {{mapping| 7 2 -8 53 3 | 0 3 8 -11 7 }} | |||
Optimal tuning (POTE): ~243/220 = 1\7, ~27/20 = 519.704 | |||
{{Optimal ET sequence|legend=1| 7, 217, 224, 441, 665, 1771ee }} | |||
Badness: 0.052190 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 1575/1573, 2080/2079, 4096/4095, 4375/4374 | |||
Mapping: {{mapping| 7 2 -8 53 3 35 | 0 3 8 -11 7 -3 }} | |||
Optimal tuning (POTE): ~243/220 = 1\7, ~27/20 = 519.706 | |||
{{Optimal ET sequence|legend=1| 7, 217, 224, 441, 665, 1771eef }} | |||
Badness: 0.023132 | |||
== Abigail == | |||
Abigail temperament tempers out the [[pessoalisma]] in addition to the ragisma in the 7-limit. It was named by Gene Ward Smith after the birthday of First Lady Abigail Fillmore.<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_17927.html#17930]: "I propose Abigail as a name, on the grounds 313/1798 is an excellent generator, and Abigail Fillmore, wife of Millard, was born on 3-13-1798 at least as Americans recon things."</ref> | |||
''For the 5-limit temperament, see [[Very high accuracy temperaments#Abigail]].'' | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 2147483648/2144153025 | |||
{{Mapping|legend=1| 2 7 13 -1 | 0 -11 -24 19 }} | |||
: mapping generators: ~46305/32768, ~27/20 | |||
[[Optimal tuning]] ([[POTE]]): ~46305/32768 = 1\2, ~6912/6125 = 208.899 | |||
{{Optimal ET sequence|legend=1| 46, 132, 178, 224, 270, 494, 764, 1034, 1798 }} | |||
[[Badness]]: 0.037000 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 131072/130977 | |||
Mapping: {{mapping| 2 7 13 -1 1 | 0 -11 -24 19 17 }} | |||
Optimal tuning (POTE): ~99/70 = 1\2, ~1155/1024 = 208.901 | |||
{{Optimal ET sequence|legend=1| 46, 132, 178, 224, 270, 494, 764 }} | |||
Badness: 0.012860 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 1716/1715, 2080/2079, 3025/3024, 4096/4095 | |||
Mapping: {{mapping| 2 7 13 -1 1 -2 | 0 -11 -24 19 17 27 }} | |||
Optimal tuning (POTE): ~99/70 = 1\2, ~44/39 = 208.903 | |||
{{Optimal ET sequence|legend=1| 46, 178, 224, 270, 494, 764, 1258 }} | |||
Badness: 0.008856 | |||
== Gamera == | |||
''For the 5-limit temperament, see [[High badness temperaments#Gamera]]. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 589824/588245 | |||
{{Mapping|legend=1| 1 6 10 3 | 0 -23 -40 -1 }} | |||
: mapping generators: ~2, ~8/7 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 230.336 | |||
{{Optimal ET sequence|legend=1| 26, 73, 99, 224, 323, 422, 745d }} | |||
[[Badness]]: 0.037648 | |||
=== Hemigamera === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 589824/588245 | |||
Mapping: {{mapping| 2 12 20 6 5 | 0 -23 -40 -1 5 }} | |||
: mapping generators: ~99/70, ~8/7 | |||
Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 230.3370 | |||
{{Optimal ET sequence|legend=1| 26, 198, 224, 422, 646, 1068d }} | |||
Badness: 0.040955 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 1716/1715, 2080/2079, 2200/2197, 3025/3024 | |||
Mapping: {{mapping| 2 12 20 6 5 17 | 0 -23 -40 -1 5 -25 }} | |||
Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 230.3373 | |||
{{Optimal ET sequence|legend=1| 26, 198, 224, 422, 646f, 1068df }} | |||
Badness: 0.020416 | |||
=== Semigamera === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 4375/4374, 14641/14580, 15488/15435 | |||
Mapping: {{mapping| 1 6 10 3 12 | 0 -46 -80 -2 -89 }} | |||
: mapping generators: ~2, ~77/72 | |||
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.1642 | |||
{{Optimal ET sequence|legend=1| 73, 125, 198, 323, 521 }} | |||
Badness: 0.078 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 676/675, 1001/1000, 4375/4374, 14641/14580 | |||
Mapping: {{mapping| 1 6 10 3 12 18 | 0 -46 -80 -2 -89 -149 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.1628 | |||
{{Optimal ET sequence|legend=1| 73f, 125f, 198, 323, 521 }} | |||
Badness: 0.044 | |||
== Crazy == | |||
: ''For the 5-limit version, see [[Very high accuracy temperaments #Kwazy]].'' | |||
Crazy tempers out the [[kwazy comma]] in the 5-limit, and adds the ragisma to extend it to the 7-limit. It can be described as the {{nowrap| 118 & 494 }} temperament. [[1106edo]] is an strong tuning. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, {{monzo| -53 10 16 }} | |||
{{Mapping|legend=1| 2 1 6 -15 | 0 8 -5 76 }} | |||
: mapping generators: ~332150625/234881024, ~1125/1024 | |||
[[Optimal tuning]]s: | |||
* [[CTE]]: ~332150625/234881024 = 600.0000, ~1125/1024 = 162.7475 | |||
* [[error map]]: {{val| 0.0000 +0.0253 -0.0514 -0.0133 }} | |||
* [[CWE]]: ~332150625/234881024 = 600.0000, ~1125/1024 = 162.7474 | |||
* error map: {{val| 0.0000 +0.0244 -0.0508 -0.0218 }} | |||
{{Optimal ET sequence|legend=1| 118, 376, 494, 612, 1106, 1718 }} | |||
[[Badness]] (Smith): 0.0394 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 2791309312/2790703125 | |||
Mapping: {{mapping| 2 1 6 -15 -8 | 0 8 -5 76 55 }} | |||
Optimal tunings: | |||
* CTE: ~99/70 = 162.7485, ~1125/1024 = 162.7485 | |||
* CWE: ~99/70 = 162.7485, ~1125/1024 = 162.7481 | |||
{{Optimal ET sequence|legend=0| 118, 376, 494, 612, 1106, 2824, 3930e }} | |||
Badness (Smith): 0.0170 | |||
== Orga == | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 54975581388800/54936068900769 | |||
{{Mapping|legend=1| 2 21 36 5 | 0 -29 -51 1 }} | |||
: mapping generators: ~7411887/5242880, ~1310720/1058841 | |||
[[Optimal tuning]] ([[POTE]]): ~7411887/5242880 = 1\2, ~8/7 = 231.104 | |||
{{Optimal ET sequence|legend=1| 26, 244, 270, 836, 1106, 1376, 2482 }} | |||
[[Badness]]: 0.040236 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 5767168/5764801 | |||
Mapping: {{mapping| 2 21 36 5 2 | 0 -29 -51 1 8 }} | |||
Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 231.103 | |||
{{Optimal ET sequence|legend=1| 26, 244, 270, 566, 836, 1106 }} | |||
Badness: 0.016188 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 1716/1715, 2080/2079, 3025/3024, 15379/15360 | |||
Mapping: {{mapping| 2 21 36 5 2 24 | 0 -29 -51 1 8 -27 }} | |||
Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 231.103 | |||
{{Optimal ET sequence|legend=1| 26, 244, 270, 566, 836f, 1106f }} | |||
Badness: 0.021762 | |||
== Seniority == | |||
{{See also| Very high accuracy temperaments #Senior }} | |||
Aside from the ragisma, the seniority temperament (26 & 145) tempers out the wadisma, 201768035/201326592. It is so named because the senior comma ({{monzo| -17 62 -35 }}, quadla-sepquingu) is tempered out. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 201768035/201326592 | |||
{{Mapping|legend=1| 1 11 19 2 | 0 -35 -62 3 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3087/2560 = 322.804 | |||
{{Optimal ET sequence|legend=1| 26, 145, 171, 1513d, 1684d, 1855d, 2026d, 2197d, 2368d, 2539d, 2710d }} | |||
[[Badness]]: 0.044877 | |||
=== Senator === | |||
The senator temperament (26 & 145) is an 11-limit extension of the seniority, which tempers out 441/440 and 65536/65219. It can be extended to the 13- and 17-limit immediately, by adding 364/363 and 595/594 to the comma list in this order. | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 441/440, 4375/4374, 65536/65219 | |||
Mapping: {{mapping| 1 11 19 2 4 | 0 -35 -62 3 -2 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~77/64 = 322.793 | |||
{{Optimal ET sequence|legend=1| 26, 119c, 145, 171, 316e, 487ee }} | |||
Badness: 0.092238 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 364/363, 441/440, 2200/2197, 4375/4374 | |||
Mapping: {{mapping| 1 11 19 2 4 15 | 0 -35 -62 3 -2 -42 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~77/64 = 322.793 | |||
{{Optimal ET sequence|legend=1| 26, 119c, 145, 171, 316ef, 487eef }} | |||
Badness: 0.044662 | |||
==== 17-limit ==== | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 364/363, 441/440, 595/594, 1156/1155, 2200/2197 | |||
Mapping: {{mapping| 1 11 19 2 4 15 17 | 0 -35 -62 3 -2 -42 -48 }} | |||
Optimal tuning (POTE): ~77/64 = 322.793 | |||
{{Optimal ET sequence|legend=1| 26, 119c, 145, 171, 316ef, 487eef }} | |||
Badness: 0.026562 | |||
== Monzismic == | |||
: ''For the 5-limit version of this temperament, see [[Very high accuracy temperaments #Monzismic]]. | |||
The monzismic temperament (53 & 612) tempers out the [[monzisma]], {{monzo| 54 -37 2 }}, and in the 7-limit, the [[nanisma]], {{monzo| 109 -67 0 -1 }}, as well as the ragisma, [[4375/4374]]. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, {{monzo| -55 30 2 1 }} | |||
{{Mapping|legend=1| 1 2 10 -25 | 0 -2 -37 134 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~{{monzo| -27 11 3 1 }} = 249.0207 | |||
{{Optimal ET sequence|legend=1| 53, …, 559, 612, 1277, 1889 }} | |||
[[Badness]]: 0.046569 | |||
=== Monzism === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 4375/4374, 41503/41472, 184549376/184528125 | |||
Mapping: {{mapping| 1 2 10 -25 46 | 0 -2 -37 134 -205 }} | |||
Optimal tuning (POTE): ~231/200 = 249.0193 | |||
{{Optimal ET sequence|legend=1| 53, 559, 612 }} | |||
Badness: 0.057083 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 2200/2197, 4096/4095, 4375/4374, 40656/40625 | |||
Mapping: {{mapping| 1 2 10 -25 46 23 | 0 -2 -37 134 -205 -93 }} | |||
Optimal tuning (POTE): ~231/200 = 249.0199 | |||
{{Optimal ET sequence|legend=1| 53, 559, 612 }} | |||
Badness: 0.053780 | |||
== Semidimfourth == | |||
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Semidimfourth]].'' | |||
The semidimfourth temperament is featured by a semi-diminished fourth inverval which is [[128/125]] above the pythagorean major third [[81/64]]. In the 7-limit, this temperament tempers out the ragisma and the triwellisma, 235298/234375. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 235298/234375 | |||
[[Mapping]]: {{mapping| 1 21 28 36 | 0 -31 -41 -53 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 448.456 | |||
{{Optimal ET sequence|legend=1| 8d, 91, 99, 289, 388, 875, 1263d, 1651d }} | |||
[[Badness]]: 0.055249 | |||
=== Neusec === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 235298/234375 | |||
Mapping: {{mapping| 2 11 15 19 15 | 0 -31 -41 -53 -32 }} | |||
Optimal tuning (POTE): ~99/70 = 1\2, ~12/11 = 151.547 | |||
{{Optimal ET sequence|legend=1| 8d, 190, 388 }} | |||
Badness: 0.059127 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 847/845, 1001/1000, 3025/3024, 4375/4374 | |||
Mapping: {{mapping| 2 11 15 19 15 17 | 0 -31 -41 -53 -32 -38 }} | |||
Optimal tuning (POTE): ~99/70 = 1\2, ~12/11 = 151.545 | |||
{{Optimal ET sequence|legend=1| 8d, 190, 198, 388 }} | |||
Badness: 0.030941 | |||
== Acrokleismic == | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 2202927104/2197265625 | |||
{{Mapping|legend=1| 1 10 11 27 | 0 -32 -33 -92 }} | |||
: mapping generators: ~2, ~6/5 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.557 | |||
{{Optimal ET sequence|legend=1| 19, …, 251, 270, 2449c, 2719c, 2989bc }} | |||
[[Badness]]: 0.056184 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 4375/4374, 41503/41472, 172032/171875 | |||
Mapping: {{mapping| 1 10 11 27 -16 | 0 -32 -33 -92 74 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.558 | |||
{{Optimal ET sequence|legend=1| 19, 251, 270, 829, 1099, 1369, 1639 }} | |||
Badness: 0.036878 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 676/675, 1001/1000, 4375/4374, 10985/10976 | |||
Mapping: {{mapping| 1 10 11 27 -16 25 | 0 -32 -33 -92 74 -81 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.557 | |||
{{Optimal ET sequence|legend=1| 19, 251, 270 }} | |||
Badness: 0.026818 | |||
=== Counteracro === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 4375/4374, 5632/5625, 117649/117612 | |||
Mapping: {{mapping| 1 10 11 27 55 | 0 -32 -33 -92 -196 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.553 | |||
{{Optimal ET sequence|legend=1| 19e, 251e, 270, 1061e, 1331c, 1601c, 1871bc, 4012bcde }} | |||
Badness: 0.042572 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 676/675, 1716/1715, 4225/4224, 4375/4374 | |||
Mapping: {{mapping| 1 10 11 27 55 25 | 0 -32 -33 -92 -196 -81 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.554 | |||
{{Optimal ET sequence|legend=1| 19e, 251e, 270, 1331c, 1601c, 1871bcf, 2141bcf }} | |||
Badness: 0.026028 | |||
== Quasithird == | |||
The quasithird temperament is featured by a major third interval which is 1600000/1594323 ([[amity comma]]) or 5120/5103 ([[5120/5103|hemifamity comma]]) below the just major third [[5/4]] as a generator, five of which give a fifth with octave reduction. This temperament has a period of a quarter octave, which allows to temper out the [[4375/4374|ragisma]] and {{monzo|-60 29 0 5}}. | |||
[[Subgroup]]: 2.3.5 | |||
[[Comma list]]: {{monzo| 55 -64 20 }} | |||
{{Mapping|legend=1| 4 0 -11 | 0 5 16 }} | |||
: mapping generators: ~51200000/43046721, ~1594323/1280000 | |||
[[Optimal tuning]] ([[POTE]]): ~51200000/43046721, ~1594323/1280000 = 380.395 | |||
{{Optimal ET sequence|legend=1| 60, 104c, 164, 224, 388, 612, 1612, 2224, 2836, 6284, 9120, 15404 }} | |||
[[Badness]]: 0.099519 | |||
=== 7-limit === | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, {{monzo| -60 29 0 5 }} | |||
{{Mapping|legend=1| 4 0 -11 48 | 0 5 16 -29 }} | |||
[[Optimal tuning]] ([[POTE]]): ~65536/55125 = 1\4, ~5103/4096 = 380.388 | |||
{{Optimal ET sequence|legend=1| 60d, 164, 224, 388, 612, 1448, 2060 }} | |||
[[Badness]]: 0.061813 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 4296700485/4294967296 | |||
Mapping: {{mapping| 4 0 -11 48 43 | 0 5 16 -29 -23 }} | |||
Optimal tuning (POTE): ~5103/4096 = 380.387 (or ~22/21 = 80.387) | |||
{{Optimal ET sequence|legend=1| 60d, 164, 224, 388, 612, 836, 1448 }} | |||
Badness: 0.021125 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 2200/2197, 3025/3024, 4096/4095, 4375/4374 | |||
Mapping: {{mapping| 4 0 -11 48 43 11 | 0 5 16 -29 -23 3 }} | |||
Optimal tuning (POTE): ~81/65 = 380.385 (or ~22/21 = 80.385) | |||
{{Optimal ET sequence|legend=1| 60d, 164, 224, 388, 612, 836, 1448f, 2284f }} | |||
Badness: 0.029501 | |||
== Deca == | |||
: ''For 5-limit version of this temperament, see [[10th-octave temperaments #Neon]].'' | |||
Deca temperament has a period of 1/10 octave and tempers out the [[linus comma]], {{monzo| 11 -10 -10 10 }}, neon comma {{monzo| 21 60 -50 }} and {{monzo| 12 -3 -14 9 }} = 165288374272/164794921875 (satritrizo-asepbigu). | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 165288374272/164794921875 | |||
{{Mapping|legend=1| 10 4 9 2 | 0 5 6 11 }} | |||
: mapping generators: ~15/14, ~6/5 | |||
[[Optimal tuning]] ([[POTE]]): ~15/14 = 1\10, ~6/5 = 315.577 | |||
{{Optimal ET sequence|legend=1| 80, 190, 270, 1270, 1540, 1810, 2080 }} | |||
[[Badness]]: 0.080637 | |||
Badness (Sintel): 2.041 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 391314/390625 | |||
Mapping: {{mapping| 10 4 9 2 18 | 0 5 6 11 7 }} | |||
Optimal tuning (POTE): ~15/14 = 1\10, ~6/5 = 315.582 | |||
{{Optimal ET sequence|legend=1| 80, 190, 270, 1000, 1270, 1540e, 1810e }} | |||
Badness: 0.024329 | |||
Badness (Sintel): 0.804 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 1001/1000, 3025/3024, 4225/4224, 4375/4374 | |||
Mapping: {{mapping| 10 4 9 2 18 37 | 0 5 6 11 7 0 }} | |||
Optimal tuning (POTE): ~15/14 = 1\10, ~6/5 = 315.602 (~40/39 = 44.398) | |||
{{Optimal ET sequence|legend=1| 80, 190, 270, 730, 1000 }} | |||
Badness: 0.016810 | |||
Badness (Sintel): 0.695 | |||
=== no-17's 19-limit === | |||
Subgroup: 2.3.5.7.11.13.19 | |||
Comma list: 1001/1000, 3025/3024, 4225/4224, 4375/4374, 1521/1520 | |||
Mapping: {{mapping| 10 4 9 2 18 37 33 | 0 5 6 11 7 0 4 }} | |||
Optimal tuning (CTE): ~15/14 = 1\10, ~6/5 = 315.581 (~39/38 = 44.419) | |||
{{Optimal ET sequence|legend=1| 80, 190, 270, 730, 1000 }} | |||
Badness (Sintel): 0.556 | |||
== Keenanose == | |||
Keenanose is named for the fact that it uses [[385/384]], the keenanisma, as the generator. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, {{monzo| -56 1 -8 26 }} | |||
{{Mapping|legend=1| 1 2 3 3 | 0 -112 -183 -52 }} | |||
: mapping generators: ~2, ~{{monzo| 21 3 1 -10 }} | |||
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~{{monzo| 21 3 1 -10 }} = 4.4465 | |||
{{Optimal ET sequence|legend=1| 270, 1079, 1349, 1619, 1889, 2159, 4048, 18081cd }} | |||
[[Badness]]: 0.0858 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 4375/4374, 117649/117612, 67110351/67108864 | |||
Mapping: {{mapping| 1 2 3 3 3 | 0 -112 -183 -52 124 }} | |||
Optimal tuning (CTE): ~2 = 1\1, ~385/384 = 4.4465 | |||
{{Optimal ET sequence|legend=1| 270, 1349, 1619, 1889, 2159, 11065, 13224 }} | |||
Badness: 0.0308 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 4225/4224, 4375/4374, 6656/6655, 117649/117612 | |||
Mapping: {{mapping| 1 2 3 3 3 3 | 0 -112 -183 -52 124 189 }} | |||
Optimal tuning (CTE): ~2 = 1\1, ~385/384 = 4.4466 | |||
{{Optimal ET sequence|legend=1| 270, 1079, 1349, 1619, 1889, 4048 }} | |||
Badness: 0.0213 | |||
== Aluminium == | |||
Aluminium is named after the 13th element, and tempers out the {{monzo| 92 -39 -13 }} comma which sets [[135/128]] interval to be equal to 1/13th of the octave. | |||
[[Subgroup]]: 2.3.5 | |||
[[Comma list]]: {{monzo| 92 -39 -13 }} | |||
[[Mapping]]: {{mapping| 13 0 92 | 0 1 -3 }} | |||
: mapping generators: ~135/128, ~3 | |||
[[Optimal tuning]] ([[CTE]]): ~135/128 = 1\13, ~3/2 = 701.9897 | |||
{{Optimal ET sequence|legend=1| 65, 299, 364, 429, 494, 559, 1053, 1612, 5889, 7501, 9113, 10725, 23062bc, 33787bcc, 44512bbcc }} | |||
[[Badness]]: 0.123 | |||
=== 7-limit === | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, {{monzo| 92 -39 -13 }} | |||
[[Mapping]]: {{mapping| 13 0 92 -355 | 0 1 -3 19 }} | |||
[[Optimal tuning]] ([[CTE]]): ~135/128 = 1\13, ~3/2 = 702.0024 | |||
{{Optimal ET sequence|legend=1| 494, 1053, 1547, 8788, 10335, 11882, 13429b, 14976b }} | |||
[[Badness]]: 0.126 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 4375/4374, 234375/234256, 2097152/2096325 | |||
Mapping: {{mapping| 13 0 92 -355 148 | 0 1 -3 19 -5 }} | |||
Optimal tuning (CTE): ~135/128 = 1\13, ~3/2 = 702.0042 | |||
{{Optimal ET sequence|legend=1| 494, 1053, 1547, 3588e, 5135e }} | |||
Badness: 0.0421 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 4096/4095, 4375/4374, 6656/6655, 78125/78078 | |||
Mapping: {{mapping| 13 0 92 -355 148 419 | 0 1 -3 19 -5 -18 }} | |||
Optimal tuning (CTE): ~135/128 = 1\13, ~3/2 = 702.0099 | |||
{{Optimal ET sequence|legend=1| 494, 1547, 2041, 4576def }} | |||
Badness: 0.0286 | |||
== Countritonic == | |||
: ''For the 5-limit version of this temperament, see [[Schismic–Mercator equivalence continuum #Countritonic]].'' | |||
Countritonic (''co-un-tritonic'') can be described as the 53 & 422 temperament, generated by an octave-reduced 91st harmonic or subharmonic in the 13-limit. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 68719476736/68356598625 | |||
{{Mapping|legend=1| 1 6 19 -33 | 0 -9 -34 73 }} | |||
: mapping generators: ~2, ~45927/32768 | |||
[[Optimal tuning]] (CTE): ~2 = 1\1, ~45927/32768 = 588.6216 | |||
{{Optimal ET sequence|legend=1| 53, 210d, 263, 316, 369, 422, 791, 1213cd, 2004bcdd }} | |||
[[Badness]]: 0.133 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 4375/4374, 5632/5625, 2621440/2614689 | |||
Mapping: {{mapping| 1 6 19 -13 79 | 0 -9 -34 73 154 }} | |||
Optimal tuning (CTE): ~2 = 1\1, ~539/384 = 588.6258 | |||
{{Optimal ET sequence|legend=1| 53, 316e, 369, 422, 791e, 1213cde }} | |||
Badness: 0.0707 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 2080/2079, 2200/2197, 4375/4374, 5632/5625 | |||
Mapping: {{mapping| 1 6 19 -13 79 | 0 -9 -34 73 154 -74 }} | |||
Optimal tuning (CTE): ~2 = 1\1, ~128/91 = 588.6277 | |||
{{Optimal ET sequence|legend=1| 53, 316ef, 369f, 422, 1213cdeff, 1635bcdefff }} | |||
Badness: 0.0366 | |||
== Quatracot == | |||
{{See also| Stratosphere }} | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, {{monzo| -32 5 14 -3 }} | |||
{{Mapping|legend=1| 2 7 7 23 | 0 -13 -8 -59 }} | |||
: mapping generators: ~2278125/1605632, ~448/405 | |||
[[Optimal tuning]] ([[POTE]]): ~2278125/1605632 = 1\2, ~448/405 = 176.805 | |||
{{Optimal ET sequence|legend=1| 190, 224, 414, 638, 1052c, 1690bcc }} | |||
[[Badness]]: 0.175982 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 1265625/1261568 | |||
Mapping: {{mapping| 2 7 7 23 19 | 0 -13 -8 -59 -41 }} | |||
Optimal tuning (POTE): ~99/70 = 1\2, ~448/405 = 176.806 | |||
{{Optimal ET sequence|legend=1| 190, 224, 414, 638, 1052c }} | |||
Badness: 0.041043 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 625/624, 729/728, 1575/1573, 2200/2197 | |||
Mapping: {{mapping| 2 7 7 23 19 13 | 0 -13 -8 -59 -41 -19 }} | |||
Optimal tuning (POTE): ~99/70 = 1\2, ~195/176 = 176.804 | |||
{{Optimal ET sequence|legend=1| 190, 224, 414, 638, 1690bcc, 2328bccde }} | |||
Badness: 0.022643 | |||
== Moulin == | |||
Moulin has a generator of 22/13, and it is named after the ''Law & Order: Special Victims Unit'' episode Season 22, Episode 13. "Trick-Rolled At The Moulin". It can be described as the 494 & 1619 temperament. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, {{monzo| -88 2 45 -7 }} | |||
{{Mapping|legend=1| 1 57 38 248 | 0 -73 -47 -323 }} | |||
: mapping generators: ~2, ~6422528/3796875 | |||
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~6422528/3796875 = 910.9323 | |||
{{Optimal ET sequence|legend=1| 494, 1125, 1619 }} | |||
[[Badness]]: 0.234 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 4375/4374, 759375/758912, 100663296/100656875 | |||
Mapping: {{mapping| 1 57 38 248 -14 | 0 -73 -47 -323 23 }} | |||
Optimal tuning (CTE): ~2 = 1\1, ~1024/605 = 910.9323 | |||
{{Optimal ET sequence|legend=1| 494, 1125, 1619, 2113 }} | |||
Badness: 0.0678 | |||
=== 13-limit === | |||
Since 11/8 is within 23 generators, the 25 tone MOS (4L 21s) of this temperament contains the 8:11:13 triad. | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 4225/4224, 4375/4374, 6656/6655, 78125/78078 | |||
Mapping: {{mapping| 1 57 38 248 -14 -13 | 0 -73 -47 -323 23 22 }} | |||
Optimal tuning (CTE): ~2 = 1\1, ~22/13 = 910.9323 | |||
{{Optimal ET sequence|legend=1| 494, 1125, 1619, 2113 }} | |||
Badness: 0.0271 | |||
== Palladium == | |||
: ''For the 5-limit version of this temperament, see [[46th-octave temperaments]]''. | |||
The name of the ''palladium'' temperament comes from palladium, the 46th element. Palladium has a period of 1/46 octave. It tempers out the 46-9/5-comma, {{monzo| -39 92 -46 }}, by which 46 minortones (10/9) fall short of seven octaves. This temperament can be described as 46 & 414 temperament, which tempers out {{monzo| -51 8 2 12 }} as well as the ragisma. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, {{monzo| -51 8 2 12 }} | |||
{{Mapping|legend=1| 46 0 -39 202 | 0 1 2 -1 }} | |||
: mapping generators: ~83349/81920, ~3 | |||
[[Optimal tuning]] ([[POTE]]): ~83349/81920 = 1\46, ~3/2 = 701.6074 | |||
{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874d }} | |||
[[Badness]]: 0.308505 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4375/4374, 134775333/134217728 | |||
Mapping: {{mapping| 46 0 -39 202 232 | 0 1 2 -1 -1 }} | |||
Optimal tuning (POTE): ~8192/8085 = 1\46, ~3/2 = 701.5951 | |||
{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874de }} | |||
Badness: 0.073783 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 3025/3024, 4225/4224, 4375/4374, 26411/26364 | |||
Mapping: {{mapping| 46 0 -39 202 232 316 | 0 1 2 -1 -1 -2 }} | |||
Optimal tuning (POTE): ~65/64 = 1\46, ~3/2 = 701.6419 | |||
{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874de, 1334de }} | |||
Badness: 0.040751 | |||
=== 17-limit === | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 833/832, 1089/1088, 1225/1224, 1701/1700, 4225/4224 | |||
Mapping: {{mapping| 46 0 -39 202 232 316 188 | 0 1 2 -1 -1 -2 0 }} | |||
Optimal tuning (POTE): ~65/64 = 1\46, ~3/2 = 701.6425 | |||
{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874de, 1334deg }} | |||
Badness: 0.022441 | |||
== Oviminor == | |||
{{See also| Syntonic–kleismic equivalence continuum }} | |||
Oviminor is named after the facts that it takes 184 minor thirds of 6/5 to reach 4/3, the Roman consul was Eggius in the year 184 AD, and the Latin word for egg is ovum, and with prefix ovi-. It sets a new record of complexity for a chain of nineteen 6/5's past [[egads]], though it is less accurate. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, {{monzo| -100 53 48 -34 }} | |||
{{Mapping|legend=1| 1 50 51 147 | 0 -184 -185 -548 }} | |||
: mapping generators: ~2, ~6/5 | |||
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~6/5 = 315.7501 | |||
{{Optimal ET sequence|legend=1| 19, …, 1600, 1619, 4838, 6457c }} | |||
[[Badness]]: 0.582 | |||
== Octoid == | |||
''For the 5-limit temperament, see [[8th-octave temperaments#Octoid (5-limit)]].'' | |||
The octoid temperament has a period of 1/8 octave and tempers out 4375/4374 ([[4375/4374|ragisma]]) and 16875/16807 ([[16875/16807|mirkwai]]). In the 11-limit, it tempers out 540/539, 1375/1372, and 6250/6237. In this temperament, one period gives both 12/11 and 49/45, two gives 25/21, three gives 35/27, and four gives both 99/70 and 140/99. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 16875/16807 | |||
{{Mapping|legend=1| 8 1 3 3 | 0 3 4 5 }} | |||
: mapping generators: ~49/45, ~7/5 | |||
[[Optimal tuning]] ([[POTE]]): ~49/45 = 1\8, ~7/5 = 583.940 | |||
[[Tuning ranges]]: | |||
* 7-odd-limit [[diamond monotone]]: ~7/5 = [578.571, 600.000] (27\56 to 4\8) | |||
* 9-odd-limit diamond monotone: ~7/5 = [581.250, 586.364] (31\64 to 43\88) | |||
* 7-odd-limit [[diamond tradeoff]]: ~7/5 = [582.512, 584.359] | |||
* 9-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084] | |||
{{Optimal ET sequence|legend=1| 8d, 72, 152, 224 }} | |||
[[Badness]]: 0.042670 | |||
Scales: [[octoid72]], [[octoid80]] | |||
=== 11-limit === | |||
The [[11-limit]] is the last place where all the extensions of octoid shown here agree in the mappings of primes. [[80edo]] is an alternative tuning for octoid in the 11-limit; though [[72edo]] does better for minimaxing the damage on the [[11-odd-limit]], 80edo damages prime 7 in favor of practically-just [[17/16]]'s, [[11/10]]'s and [[9/7]]'s. In higher limits, if one wants to use 80edo as the tuning, one must use octopus — not octoid — as 80edo doesn't temper 324/323, 375/374, 495/494, 625/624, 715/714 or 729/728. | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 540/539, 1375/1372, 4000/3993 | |||
Mapping: {{mapping| 8 1 3 3 16 | 0 3 4 5 3 }} | |||
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.962 | |||
Tuning ranges: | |||
* 11-odd-limit diamond monotone: ~7/5 = [581.250, 586.364] (31\64, 43\88) | |||
* 11-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084] | |||
{{Optimal ET sequence|legend=1| 72, 152, 224 }} | |||
Badness: 0.014097 | |||
Scales: [[octoid72]], [[octoid80]] | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 540/539, 625/624, 729/728, 1375/1372 | |||
Mapping: {{mapping| 8 1 3 3 16 -21 | 0 3 4 5 3 13 }} | |||
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.905 | |||
{{Optimal ET sequence|legend=1| 72, 152f, 224 }} | |||
Badness: 0.015274 | |||
Scales: [[octoid72]], [[octoid80]] | |||
; Music | |||
* ''Dreyfus'' (archived 2010) by [[Gene Ward Smith]] – [https://soundcloud.com/genewardsmith/genewardsmith-dreyfus SoundCloud] | [https://www.archive.org/details/Dreyfus details] | [https://www.archive.org/download/Dreyfus/Genewardsmith-Dreyfus.mp3 play] – octoid[72] in 224edo tuning | |||
===== 17-limit ===== | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 375/374, 540/539, 625/624, 715/714, 729/728 | |||
Mapping: {{mapping| 8 1 3 3 16 -21 -14 | 0 3 4 5 3 13 12 }} | |||
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.842 | |||
{{Optimal ET sequence|legend=1| 72, 152fg, 224, 296, 520g }} | |||
Badness: 0.014304 | |||
Scales: [[octoid72]], [[octoid80]] | |||
===== 19-limit ===== | |||
Subgroup: 2.3.5.7.11.13.17.19 | |||
Comma list: 324/323, 375/374, 400/399, 495/494, 540/539, 715/714 | |||
Mapping: {{mapping| 8 1 3 3 16 -21 -14 34 | 0 3 4 5 3 13 12 0 }} | |||
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.932 | |||
{{Optimal ET sequence|legend=1| 72, 152fg, 224 }} | |||
Badness: 0.016036 | |||
Scales: [[octoid72]], [[octoid80]] | |||
==== Octopus ==== | |||
A reasonable alternative tuning of octopus not shown here which works well for 23-limit harmony (and beyond) is [[80edo]], which has a strong sharp tendency that can be thought of as matching the sharpness of mapping [[19/16]] to 1\4 = 300{{cent}}. | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 169/168, 325/324, 364/363, 540/539 | |||
Mapping: {{mapping| 8 1 3 3 16 14 | 0 3 4 5 3 4 }} | |||
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.892 | |||
{{Optimal ET sequence|legend=1| 72, 152, 224f }} | |||
Badness: 0.021679 | |||
Scales: [[octoid72]], [[octoid80]] | |||
===== 17-limit ===== | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 169/168, 221/220, 289/288, 325/324, 540/539 | |||
Mapping: {{mapping| 8 1 3 3 16 14 21 | 0 3 4 5 3 4 3 }} | |||
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.811 | |||
{{Optimal ET sequence|legend=1| 72, 152, 224fg, 296ffg }} | |||
Badness: 0.015614 | |||
Scales: [[Octoid72]], [[Octoid80]] | |||
===== 19-limit ===== | |||
Subgroup: 2.3.5.7.11.13.17.19 | |||
Comma list: 169/168, 221/220, 286/285, 289/288, 325/324, 400/399 | |||
Mapping: {{mapping| 8 1 3 3 16 14 21 34 | 0 3 4 5 3 4 3 0 }} | |||
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 584.064 | |||
{{Optimal ET sequence|legend=1| 72, 152, 224fg, 376ffgh }} | |||
Badness: 0.016321 | |||
Scales: [[Octoid72]], [[Octoid80]] | |||
==== Hexadecoid ==== | |||
{{ See also | 16th-octave temperaments }} | |||
Hexadecoid (80 & 144) has a period of 1/16 octave and tempers out 4225/4224. | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 540/539, 1375/1372, 4000/3993, 4225/4224 | |||
Mapping: {{mapping| 16 2 6 6 32 67 | 0 3 4 5 3 -1 }} | |||
: mapping generators: ~448/429, ~7/5 | |||
Optimal tuning (POTE): ~448/429 = 1\16, ~13/8 = 841.015 | |||
{{Optimal ET sequence|legend=1| 80, 144, 224 }} | |||
Badness: 0.030818 | |||
===== 17-limit ===== | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 540/539, 715/714, 936/935, 4000/3993, 4225/4224 | |||
Mapping: {{mapping| 16 2 6 6 32 67 81 | 0 3 4 5 3 -1 -2 }} | |||
Optimal tuning (POTE): ~117/112 = 1\16, ~13/8 = 840.932 | |||
{{Optimal ET sequence|legend=1| 80, 144, 224, 528dg }} | |||
Badness: 0.028611 | |||
===== 19-limit ===== | |||
Subgroup: 2.3.5.7.11.13.17.19 | |||
Comma list: 400/399, 540/539, 715/714, 936/935, 1331/1330, 1445/1444 | |||
Mapping: {{mapping| 16 2 6 6 32 67 81 68 | 0 -3 -4 -5 -3 1 2 0 }} | |||
Optimal tuning (POTE): ~117/112 = 1\16, ~13/8 = 840.896 | |||
{{Optimal ET sequence|legend=1| 80, 144, 224, 304dh, 528dghh }} | |||
Badness: 0.023731 | |||
== Parakleismic == | |||
{{Main| Parakleismic }} | |||
In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, {{monzo| 8 14 -13 }}, with the [[118edo]] tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7- or 11-limit, it is a decent temperament there nonetheless, and this allows an extension adding 3136/3125 and 4375/4374, and 11-limit adding 385/384. For the 7-limit [[99edo]] may be preferred, but in the 11-limit it is best to stick with 118. | |||
[[Subgroup]]: 2.3.5 | |||
[[Comma list]]: 1224440064/1220703125 | |||
{{Mapping|legend=1| 1 5 6 | 0 -13 -14 }} | |||
: mapping generators: ~2, ~6/5 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.240 | |||
{{Optimal ET sequence|legend=1| 19, 61, 80, 99, 118, 453, 571, 689, 1496 }} | |||
[[Badness]]: 0.043279 | |||
=== 7-limit === | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 3136/3125, 4375/4374 | |||
{{Mapping|legend=1| 1 5 6 12 | 0 -13 -14 -35 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.181 | |||
{{Optimal ET sequence|legend=1| 19, 80, 99, 217, 316, 415 }} | |||
[[Badness]]: 0.027431 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 385/384, 3136/3125, 4375/4374 | |||
Mapping: {{mapping| 1 5 6 12 -6 | 0 -13 -14 -35 36 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.251 | |||
{{Optimal ET sequence|legend=1| 19, 99, 118 }} | |||
Badness: 0.049711 | |||
=== Paralytic === | |||
The ''paralytic'' temperament (118&217) tempers out 441/440, 5632/5625, and 19712/19683. In 13-limit, 118 & 217 tempers out 1001/1000, 1575/1573, and 3584/3575. | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 441/440, 3136/3125, 4375/4374 | |||
Mapping: {{mapping| 1 5 6 12 25 | 0 -13 -14 -35 -82 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.220 | |||
{{Optimal ET sequence|legend=1| 19e, 99e, 118, 217, 335, 552d, 887dd }} | |||
Badness: 0.036027 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 441/440, 1001/1000, 3136/3125, 4375/4374 | |||
Mapping: {{mapping| 1 5 6 12 25 -16 | 0 -13 -14 -35 -82 75 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.214 | |||
{{Optimal ET sequence|legend=1| 99e, 118, 217, 552d, 769de }} | |||
Badness: 0.044710 | |||
==== Paraklein ==== | |||
The ''paraklein'' temperament (19e & 118) is another 13-limit extension of paralytic, which equates [[13/11]] with [[32/27]], [[14/13]] with [[15/14]], [[25/24]] with [[26/25]], and [[27/26]] with [[28/27]]. | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 196/195, 352/351, 625/624, 729/728 | |||
Mapping: {{mapping| 1 5 6 12 25 15 | 0 -13 -14 -35 -82 -43 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.225 | |||
{{Optimal ET sequence|legend=1| 19e, 99ef, 118, 217ff, 335ff }} | |||
Badness: 0.037618 | |||
=== Parkleismic === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 176/175, 1375/1372, 2200/2187 | |||
Mapping: {{mapping| 1 5 6 12 20 | 0 -13 -14 -35 -63 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.060 | |||
{{Optimal ET sequence|legend=1| 19e, 80, 179, 259cd }} | |||
Badness: 0.055884 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 169/168, 176/175, 325/324, 1375/1372 | |||
Mapping: {{mapping| 1 5 6 12 20 10 | 0 -13 -14 -35 -63 -24 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.075 | |||
{{Optimal ET sequence|legend=1| 19e, 80, 179 }} | |||
Badness: 0.036559 | |||
=== Paradigmic === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 540/539, 896/891, 3136/3125 | |||
Mapping: {{mapping| 1 5 6 12 -1 | 0 -13 -14 -35 17 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.096 | |||
{{Optimal ET sequence|legend=1| 19, 61d, 80, 99e, 179e }} | |||
Badness: 0.041720 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 169/168, 325/324, 540/539, 832/825 | |||
Mapping: {{mapping| 1 5 6 12 -1 10 | 0 -13 -14 -35 17 -24 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.080 | |||
{{Optimal ET sequence|legend=1| 19, 61d, 80, 99e, 179e }} | |||
Badness: 0.035781 | |||
=== Semiparakleismic === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 3136/3125, 4375/4374 | |||
Mapping: {{mapping| 2 10 12 24 19 | 0 -13 -14 -35 -23 }} | |||
Optimal tuning (POTE): ~99/70 = 1\2, ~6/5 = 315.181 | |||
{{Optimal ET sequence|legend=1| 80, 118, 198, 316, 514c, 830c }} | |||
Badness: 0.034208 | |||
==== Semiparamint ==== | |||
This extension was named ''semiparakleismic'' in the earlier materials. | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 352/351, 1001/1000, 3025/3024, 4375/4374 | |||
Mapping: {{mapping| 2 10 12 24 19 -1 | 0 -13 -14 -35 -23 16 }} | |||
Optimal tuning (POTE): ~99/70 = 1\2, ~6/5 = 315.156 | |||
{{Optimal ET sequence|legend=1| 80, 118, 198 }} | |||
Badness: 0.033775 | |||
==== Semiparawolf ==== | |||
This extension was named ''gentsemiparakleismic'' in the earlier materials. | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 169/168, 325/324, 364/363, 3136/3125 | |||
Mapping: {{mapping| 2 10 12 24 19 20 | 0 -13 -14 -35 -23 -24 }} | |||
Optimal tuning (POTE): ~55/39 = 1\2, ~6/5 = 315.184 | |||
{{Optimal ET sequence|legend=1| 80, 118f, 198f }} | |||
Badness: 0.040467 | |||
== Counterkleismic == | |||
{{See also| High badness temperaments #Counterhanson}} | |||
In the 5-limit, the counterhanson temperament tempers out the counterhanson (quinquinyo) comma, {{monzo| -20 -24 25 }}, the amount by which six [[648/625|major dieses (648/625)]] fall short of the [[5/4|classic major third (5/4)]]. It can be described as 19 & 224 temperament (''counterkleismic'', named by analogy to [[catakleismic]] and parakleismic), tempering out the ragisma and 158203125/157351936 (laquadru-atritriyo comma). | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 158203125/157351936 | |||
{{Mapping|legend=1| 1 20 20 61 | 0 -25 -24 -79 }} | |||
: mapping generators: ~2, ~5/3 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 316.060 | |||
{{Optimal ET sequence|legend=1| 19, 205, 224, 243, 467 }} | |||
[[Badness]]: 0.090553 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 540/539, 4375/4374, 2097152/2096325 | |||
Mapping: {{mapping| 1 20 20 61 -40 | 0 -25 -24 -79 59 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.071 | |||
{{Optimal ET sequence|legend=1| 19, 205, 224 }} | |||
Badness: 0.070952 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 540/539, 625/624, 729/728, 10985/10976 | |||
Mapping: {{mapping| 1 20 20 61 -40 56 | 0 -25 -24 -79 59 -71 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.070 | |||
{{Optimal ET sequence|legend=1| 19, 205, 224, 1587cde, 1811ccdef, 2035ccddeef, 2259ccddeef, 2483ccddeef, 2707ccddeef }} | |||
Badness: 0.033874 | |||
=== Counterlytic === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 1375/1372, 4375/4374, 496125/495616 | |||
Mapping: {{mapping| 1 20 20 61 125 | 0 -25 -24 -79 -165 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.065 | |||
{{Optimal ET sequence|legend=1| 19e, 205e, 224 }} | |||
Badness: 0.065400 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 625/624, 729/728, 1375/1372, 10985/10976 | |||
Mapping: {{mapping| 1 20 20 61 125 56 | 0 -25 -24 -79 -165 -71 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.065 | |||
{{Optimal ET sequence|legend=1| 19e, 205e, 224 }} | |||
Badness: 0.029782 | |||
== Quincy == | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 823543/819200 | |||
{{Mapping|legend=1| 1 2 3 3 | 0 -30 -49 -14 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1728/1715 = 16.613 | |||
{{Optimal ET sequence|legend=1| 72, 217, 289 }} | |||
[[Badness]]: 0.079657 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 441/440, 4000/3993, 4375/4374 | |||
Mapping: {{mapping| 1 2 3 3 4 | 0 -30 -49 -14 -39 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~100/99 = 16.613 | |||
{{Optimal ET sequence|legend=1| 72, 217, 289 }} | |||
Badness: 0.030875 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 364/363, 441/440, 676/675, 4375/4374 | |||
Mapping: {{mapping| 1 2 3 3 4 5 | 0 -30 -49 -14 -39 -94 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~100/99 = 16.602 | |||
{{Optimal ET sequence|legend=1| 72, 145, 217, 289 }} | |||
Badness: 0.023862 | |||
=== 17-limit === | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 364/363, 441/440, 595/594, 676/675, 1156/1155 | |||
Mapping: {{mapping| 1 2 3 3 4 5 5 | 0 -30 -49 -14 -39 -94 -66 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~100/99 = 16.602 | |||
{{Optimal ET sequence|legend=1| 72, 145, 217, 289 }} | |||
Badness: 0.014741 | |||
=== 19-limit === | |||
Subgroup: 2.3.5.7.11.13.17.19 | |||
Comma list: 343/342, 364/363, 441/440, 476/475, 595/594, 676/675 | |||
Mapping: {{mapping| 1 2 3 3 4 5 5 4 | 0 -30 -49 -14 -39 -94 -66 18 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~100/99 = 16.594 | |||
{{Optimal ET sequence|legend=1| 72, 145, 217 }} | |||
Badness: 0.015197 | |||
== Sfourth == | |||
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Sfourth]].'' | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 64827/64000 | |||
{{Mapping|legend=1| 1 2 3 3 | 0 -19 -31 -9 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/48 = 26.287 | |||
{{Optimal ET sequence|legend=1| 45, 46, 91, 137d }} | |||
[[Badness]]: 0.123291 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 121/120, 441/440, 4375/4374 | |||
Mapping: {{mapping| 1 2 3 3 4 | 0 -19 -31 -9 -25 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 26.286 | |||
{{Optimal ET sequence|legend=1| 45e, 46, 91e, 137de }} | |||
Badness: 0.054098 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 121/120, 169/168, 325/324, 441/440 | |||
Mapping: {{mapping| 1 2 3 3 4 4 | 0 -19 -31 -9 -25 -14 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 26.310 | |||
{{Optimal ET sequence|legend=1| 45ef, 46, 91ef, 137def }} | |||
Badness: 0.033067 | |||
=== Sfour === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 385/384, 2401/2376, 4375/4374 | |||
Mapping: {{mapping| 1 2 3 3 3 | 0 -19 -31 -9 21 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 26.246 | |||
{{Optimal ET sequence|legend=1| 45, 46, 91, 137d }} | |||
Badness: 0.076567 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 196/195, 364/363, 385/384, 4375/4374 | |||
Mapping: {{mapping| 1 2 3 3 3 3 | 0 -19 -31 -9 21 32 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 26.239 | |||
{{Optimal ET sequence|legend=1| 45, 46, 91, 137d }} | |||
Badness: 0.051893 | |||
== Trideci == | |||
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Tridecatonic]].'' | |||
The trideci temperament (26 & 65) has a period of 1/13 octave and tempers out 245/242 and 385/384 in the 11-limit. It tempers out the same 5-limit comma as the [[Octagar temperaments #Tridecatonic|tridecatonic temperament]], but with the ragisma (4375/4374) rather than the octagar (4000/3969) tempered out. The name ''trideci'' comes from "tridecim" (Latin for "[[wikipedia:13|thirteen]]"). | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4375/4374, 83349/81920 | |||
{{Mapping|legend=1| 13 0 -11 57 | 0 1 2 -1 }} | |||
[[Optimal tuning]] ([[POTE]]): ~256/245 = 1\13, ~3/2 = 699.1410 | |||
{{Optimal ET sequence|legend=1| 26, 65, 91, 156d, 247cdd }} | |||
[[Badness]]: 0.184585 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 245/242, 385/384, 4375/4374 | |||
Mapping: {{mapping| 13 0 -11 57 45 | 0 1 2 -1 0 }} | |||
Optimal tuning (POTE): ~22/21 = 1\13, ~3/2 = 699.6179 | |||
{{Optimal ET sequence|legend=1| 26, 65, 91, 156d, 247cdde }} | |||
Badness: 0.084590 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 169/168, 245/242, 325/324, 385/384 | |||
Mapping: {{mapping| 13 0 -11 57 45 48 | 0 1 2 -1 0 0 }} | |||
Optimal tuning (POTE): ~22/21 = 1\13, ~3/2 = 699.2969 | |||
{{Optimal ET sequence|legend=1| 26, 65f, 91f, 156dff }} | |||
Badness: 0.052366 | |||
== Counterorson == | |||
Counterorson tempers out the {{monzo| 147 -103 7 }} comma in the 5-limit. It uses a generator that reaches the 3rd harmonic in 7 steps, but unlike the [[semicomma family]], 5th harmonic is 103 generators up and not 3 generators down. The two mappings converge on [[53edo]]. | |||
Subgroup: 2.3.5.7 | |||
Comma list: 4375/4374, {{monzo| 154 -54 -21 -7 }} | |||
Mapping: {{mapping| 1 0 -21 85 | 0 7 103 -363 }} | |||
Optimal tuning (CTE): ~2 = 1\1, ~{{monzo| 66 -23 -9 -3 }} = 271.7113 | |||
{{Optimal ET sequence|legend=1| 53, …, 1612, 1665, 1718 }} | |||
Badness: 0.312806 | |||
== Notes == | |||
[[Category:Temperament collections]] | |||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Ragismic microtemperaments| ]] <!-- main article --> | |||
[[Category:Ragismic| ]] <!-- key article --> | |||
[[Category:Rank 2]] | |||
[[Category:Microtemperaments]] | |||
[[Category:Abigail]] | |||
[[Category:Deca]] | |||
[[Category:Enneadecal]] | |||
[[Category:Ennealimmal]] | |||
[[Category:Gamera]] | |||
[[Category:Mitonic]] | |||
[[Category:Octoid]] | |||
[[Category:Parakleismic]] | |||
[[Category:Quincy]] | |||
[[Category:Supermajor]] |